the methods, per equal weight of sugar is fructose or glucose > arabinose > galactose > lactose > maltose. The order of reducing power per molecule is fructose or glucose > lactose > maltose or galactose > arabinose.

ANCEL P. WEINBACH
D. BAILEY CALVIN

UNIVERSITY OF MISSOURI
SCHOOL OF MEDICINE

A NEW CANKER DISEASE OF RED PINE, CAUSED BY TYMPANIS PINASTRI

Red or Norway pine (Pinus resinosa Sol.) is to-day one of the most important of our native coniferous trees for reforestation purposes. Its silvicultural importance has been largely responsible for its wide use, but its freedom from serious disease has been at least contributory. Therefore, any new disease is of immediate interest and needs thorough investigation.

During the winter of 1932–33 a small area was observed in the Eli Whitney Forest (the watershed property of the New Haven Water Company, New Haven, Conn.) where the red pines were dead and dying. Subsequent studies have shown that the causal organism is *Tympapis pinastri* Tul. A preliminary report of these studies and a brief summary of the more important results are given in this article.

On red pine the disease is characterized by the formation of axially elongated stem cankers with or without definite margins and with depressed centers which become roughened and open after two or three years. The absence of any marked resinosis in or adjacent to the cankered tissue is noticeable. Each canker is centered at a node and always has one or more central branch stubs, indicating that the organism enters the stem at the bases of lateral branches. Because of the absence of cankers on the centrally located branches it appears that the fungus exists there primarily as a saprophyte and grows into the stem and produces cankers only when the host is weakened by some environmental factor. Infection has been found only in southern Connecticut in plantations established from 1916 to 1919.

The same fungus is associated with cankers on northern white pine (*P. strobus* L.), but on this host infection is limited to trees which are greatly weakened through shade suppression, root competition, poor soil or some other similar cause. Occasional cankers on white pine have been observed throughout New England and in New York and Maryland.

The fructifications of *T. pinastri* are glistening black cartilaginous bodies. They occur on practically all cankers on both hosts, but because of their small size—up to 1 mm in height and breadth—they may not be noticed unless one is particularly and closely searching for them. They are of two kinds—ovate or spherical pycnidia on a stromoid base and disk-shaped stalked apothecia. The presence of either is sufficient to identify the organism.

The parasitism of *T. pinastri* on red pine has been definitely established through artificial inoculation experiments. Pure cultures were secured from the fructifications and from inner bark mycelium from both red and white pines. Two hundred and twenty-one inoculations and 35 checks were made on 56 thrifty red pines in May, 1934. Examination of the inoculations in late September showed that small but typical cankers were present in a few cases and that fructifications were present in nearly all cases. At the same time the checks were sterile. The fungus has been reisolated in pure culture from the artificially induced cankers. No attempt has been made yet to inoculate white pines.

Studies now in progress indicate that the disease on red pine is present only in plantations; that it is much more prevalent in pure stands than in mixtures with white pine; that it is not limited to the poorer sites but may occur on the upper crown classes more on poor sites than it does on good sites; that on all sites the lower crown classes are much more susceptible than the upper ones; and that its incidence seems to be definitely correlated with the severe drought of 1930 in southern New England. It is to be expected that another period of infection need not be anticipated until another serious drought occurs.

Further studies of this disease are now under way. The writer would appreciate any information concerning diseased red pine trees or stands. Collections of *T. pinastri* or of closely related fungi on coniferous hosts are also requested.

J. R. HANNSBOUGH

DIVISION OF FOREST PATHOLOGY
BUREAU OF PLANT INDUSTRY
MARSH HALL, YALE UNIVERSITY

BOOKS RECEIVED

EXPENSE no longer a drawback

Tone-Alloy tuning forks at the price of steel forks

All Forks carefully adjusted assuring good accuracy.

Tone-Alloy Forks three times as light as steel.

Vibrations sustained three times as long as steel.

Accuracy five times that of similar forks of steel.

We were the first to list the highly precise MAGNESIUM TUNING FORKS for Science Laboratories. Their cost made them prohibitive for all but those interested in research. Since then we have investigated many alloys and now after long tests in our laboratories we are pleased to announce—*TONE-ALLOY Tuning Forks At the Price of Steel Forks*. TONE-ALLOY because of its superior characteristics of elasticity, light weight, and small inertia is an ideal material for tuning forks. An equal percussion stroke will produce a larger amplitude of vibration.

Write carefully for

adjusted Vibrations sustained three times as long of similar forks.

Prices assuring five times accuracy.

Welch Catalog lists over 10,000 items for scientists. Write for it.

W. M. WELCH SCIENTIFIC CO.
1517 Sedgwick St., Chicago, Ill., U. S. A.
Cable Address: WELMANCO.

LaMOTTE Blood Urea Outfit

For study of urea retention (urea nitrogen by factor). Result is read directly from special Urea Burette supplied. No calculations required. Accurate to 4 mg. urea per 100 cc. blood. Complete estimation takes only 15 to 20 minutes. Price, complete with instructions, $18.50 f.o.b. Baltimore, Md.

LaMOTTE CHEMICAL PRODUCTS CO.
418 Light Street Baltimore, Md.

Write for catalog.

FRED S. CARVER
Hydraulic Equipment Est. 1912
341 Hudson St., New York
ZEISS

Physicians’ and Laboratory Microscope

E S C-106

Fixed stage, 12 cm. square
Illuminating apparatus with rack and pinion
Condenser 1.2 with iris
Triple revolving nosepiece
Fine adjustment with graduated drum

Achromatic objectives:
8 n.a. 0.20
40 n.a. 0.65
90 n.a. 1.25 oil imm.

Huygens oculars 7x and 10x

Price $167.50 f. o. b. N. Y.

A good dark-field outfit is obtained by adding: Cardioid condenser $27.00 extra for oil im., with iris $4.00. Compensating ocular 15x: $12.00

A satchel type of carrying case can be supplied instead of the standard cabinet, at an additional cost of $4.50.

CARL ZEISS, INC.

485 Fifth Avenue
NEW YORK

728 So. Hill Street
LOS ANGELES