elusions drawn from the data must be made with caution. Ten of the seventeen plants had interstitial chiasmata, and the remaining seven were terminal. The plants have been arranged in the order of their fertility; and coincidence will probably not explain why the most fertile all had localized chiasmata. The third column depicts the situation as to chromosome pairing at IM. The cells examined in each plant exceed fifty. The two most fertile plants were devoid of irregularities, but so was one of the most sterile. Another interesting matter is the complete lack of correlation between per cent. of good pollen and fertility. The most fertile plant has 67 per cent. good pollen, and the next to the most sterile had 99.3 per cent. There are fertile plants with a high per cent. of good pollen, and others with a low per cent. This is equally true of the more sterile plants.

The temptation is strong to state that type of chias mata in each species is gene controlled. If this is true, the ten plants showing interstitial chiasmata should all be homozygous recessives, and all their progeny should have bivalents with interstitial chiasmata. The seven plants with terminal chiasmata should all be heterozygous, and their progeny should segregate for terminal and interstitial. Populations from each of the seventeen plants are now in the seedling stage, and next spring a large number of each will be examined.

S. L. Emsweller
H. A. Jones

University of California

HOW LONG DO ROOTS OF GRASSES LIVE?

Roots have been investigated much less than the above-ground parts of the plant because their study necessitates much more difficult technique due to their inaccessibility. As a result the length of life of both seminal and nodal roots remains a disputed question. Many earlier botanists suggested that the seminal root served to supply the plant only for a few weeks prior to the growth of nodal roots. Later workers showed that the seminal root served throughout life in annual grain plants. No work is known to the writer which concerns the length of life for either type of root in perennial grasses.

In 1932 Dr. J. E. Weaver, of the University of Nebraska, suggested to the writer the possibility of placing permanent marked bands on roots as a means of identification for determining life span. This was tried on a group of typical prairie grasses grown from both seed and rhizomes.

Containers one foot in diameter and three feet in depth were fitted with a removable metal collar extending about 4 inches above the top. The soil, therefore, extended well above the top of the container and, by removing the collar, the upper part of the roots could easily be exposed by gently washing or picking the loose sandy soil away. A small aluminum band about one fourth inch wide was stamped with a number and bent around each individual root about two inches below the soil surface. The plants were examined every six months for two years. They were subjected to all degrees of soil moisture from below the wilting coefficient to saturation, and to temperatures of 0° F. to 112° F. The results are shown in Table I.

<table>
<thead>
<tr>
<th>Species</th>
<th>No. banded roots</th>
<th>Number of banded roots living</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>6 mo.</td>
</tr>
<tr>
<td>Sporobolus heterolepis</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Panicum virgatum</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Bouteloua curtipendula</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Andropogon furcatus</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Stipa spartea</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

These results show that in all plants studied a root lives for at least a year and many in excess of two years. Some new roots are produced each season.

Tests made on the seminal roots of *Andropogon furcatus* revealed that all lived to an age of 18 months and some were still functioning at the end of two years. Thus the life span of the seminal root appears to approach, at least, that of the nodal root.

From these preliminary tests it is concluded that the method outlined is very satisfactory for measuring the life span of roots. These tests indicate that both seminal and nodal roots of prairie grasses, even under adverse conditions, may live in excess of two years.

Laurence A. Stoddart

University of Nebraska

BOOKS RECEIVED

The Journal of General Physiology

EDITED BY

W. J. CROZIER

JOHN H. NORTHROP

W. J. V. OSTERHOUT

Contents of Volume 18, No. 5, May 20, 1935

JOFFE, ELEANORE W., and MUDD, STUART. A paradoxical relation between zeta potential and suspension stability in S and R variants of intestinal bacteria.

JOFFE, ELEANORE W. A physical-chemical difference in antibodies against the S and R variants of a single bacterial strain.

LONGSWORTH, LEWIS G. The theory of diffusion in cell models. II. Solution of the steady state for three diffusing substances.

RUBIN, MORTON A. Thermal reception in fishes.

BONNER, JAMES, and THIMANN, KENNETH V. Studies on the growth hormone of plants. VII. The fate of growth substance in the plant and the nature of the growth process.

CROZIER, W. J. On the geotropic orientation of Helix.

HUSSEY, RAYMOND, and THOMPSON, WILLIAM R. The effects of radiations on biological systems. II. Immediate and subsequent effects of x-ray irradiation upon respiration of Drosophila larvae.

OSTERHOUT, W. J. V., and HILL, S. E. Restoration of the potassium effect by means of action currents.

HILL, S. E., and OSTERHOUT, W. J. V. Mechanical restoration of irritability and of the potassium effect.

INGRAHAM, RAYMOND C., and VISSCHER, MAURICE B. Studies on the elimination of dyes in the gastric and pancreatic secretions, and inferences therefrom concerning the mechanisms of secretion of acid and base.

RUNNSTRÖM, JOHN, and MICHAELIS, LEONOR. Correlation of oxidation and phosphorylation in hemolyzed blood in presence of methylene blue and pyocyanine.

CROZIER, W. J. The geotropic response in Asterina.

CROZIER, W. J. On reversal of geotropism in Asterina.

CROZIER, W. J., and KROPP, BENJAMIN. Orientation by opposed beams of light.

MOYER, LAURENCE S. Electrophoresis of sterols. II. Ergosterol.

BLAIR, H. A. On the relation of direct currents to condenser discharges as stimuli.

HECHT, SELIG. A theory of visual intensity discrimination.

SUBSCRIPTION PRICE PER YEAR (ONE VOLUME), $5.00

PUBLISHED BI-MONTHLY BY

The Rockefeller Institute for Medical Research

YORK AVENUE AND 66TH STREET

NEW YORK, N. Y.

IMPORTANT NEW BOOKS

Wilson and Haber

AN INTRODUCTION TO PLANT LIFE

First Comments

"The book seems to me to be a very excellent introduction to the subject, which should catch and hold a student's interest."—Asa C. Chandler, The Rice Institute.

"It impresses me as being a very successful college text. It has the modern outlook throughout and is presented in a clear and readable style which should make it a satisfactory text in the support of laboratory work."—B. W. Wells, North Carolina State College.

$3.00

Blanchard and Crist

A GEOGRAPHY OF EUROPE

Professor Blanchard, one of the leading geographers of Europe, has in this book provided a compact, clear and highly interesting text for courses in European geography. His point of view is both original and sound, and his presentation of the geography of the most complex of continents is novel and significant. Mr. Crist has adapted the book to American class use. Teachers will find it the best brief treatment of European geography in English.

$3.50

HENRY HOLT AND COMPANY

New York
Physicians’ and Laboratory Microscope

Binocular P S C-106

with inclined binocular body

Magnifications 56-900x

Fixed stage, 12 cm. square
Illuminating apparatus with
rack and pinion
Condenser 1.2 with iris
Triple revolving nosepiece
Fine adjustment with graduated drum

Achromatic objectives:

<table>
<thead>
<tr>
<th>Magnification</th>
<th>N.A.</th>
</tr>
</thead>
<tbody>
<tr>
<td>66</td>
<td>0.20</td>
</tr>
<tr>
<td>90</td>
<td>0.65</td>
</tr>
<tr>
<td>90</td>
<td>1.25</td>
</tr>
</tbody>
</table>

Paired Huygens oculars 7x and 10x

Price $265.00 f. o. b. N. Y.

A good dark-field outfit is obtained by adding: Cardioid condenser $27.00 extra for oil im., with iris $4. Paired Comp. oculars 15x: $24.00.

CARL ZEISS, INC.

485 FIFTH AVENUE 728 SO. HILL STREET
NEW YORK LOS ANGELES