destroyed that they disappear. And when the achromatic figure has been formed from the centrioles, it is possible not only to see that the daughter chromosomes are connected to the centrioles, but also to demonstrate such a connection by pulling either of the centrioles away from the nucleus, the chromosomes moving with the centriole as it is pulled. Such a procedure also demonstrates the elasticity of the extranuclear chromosomal fibers and those of the central spindle, for unless the centriole is pulled a considerable distance (far enough to break the fibers) from the nucleus, it and the chromosomes pulled with it immediately spring back into position when the tension is released. Thus, in these organisms, there is not the slightest doubt regarding the existence of the centrioles, the formation of the achromatic figure from the centrioles, the fibrillar nature of the achromatic figure, and the rôle of the achromatic figure in nuclear division.

The question naturally arises: Are all centrioles like those of hypermastigote flagellates and do they function in the same manner? As already noted hypermastigote centrioles vary considerably in size and in the type of achromatic figure that arises from them. In some genera the central spindle is flat and band-like, in some it is cylindrical, in some it is compact, and in some it is dispersed. In certain genera the astral rays are fine and can not be seen so readily as in others, and in those with fine astral rays the extranuclear chromosomal fibers are more difficult to see. In brief, there is every gradation beginning with genera having large centrioles and a large achromatic figure which may be seen with a 16 mm objective and a 10X ocular, and ending with those where the centrioles and achromatic figure may be seen only faintly with oil immersion objectives. So that it is only a short step from hypermastigotes of the last category to the cells of other forms of life where, in fixed and stained material, the centrioles and the achromatic figure have the same appearance as those of hypermastigotes in living material. In this connection it should be noted that in the polymastigotes Saccinobaculus and Pyrsonymphia the intranuclear achromatic figure may be seen in living cells, but the centrioles from which it arises can not be seen, and in fixed and stained material the centrioles can be seen in only one of the three species of Saccinobaculus. There are evidently all gradations of centrioles, from the large, dense ones of certain hypermastigotes to the less dense and diffuse ones of other cells, and whether a centriole can be seen in living or in fixed and stained material depends on its nature and that of the cytoplasm or nucleoplasm in which it lies. The same is also true of the achromatic figure. But the ability to demonstrate a centriole only under certain conditions of fixation and staining does not indicate that it is an artifact; nor does the inability to demonstrate it at all indicate that it is not present. It merely means that its nature is such that it can only be seen under certain conditions or that it can not be seen at all with the aid of any known technique. In any cell—and this includes practically all cells—where some type of an achromatic figure is formed, centriole material must be present; it may be congregated into a large, dense, extranuclear body as in some hypermastigotes or, on the other hand, it may be rather generally scattered through the nucleus as in the cells of many vascular plants. There is no reason why the centriole and the achromatic figure should be less variable in different types of cells than other organelles. And the fact that the centriole in certain animal and plant cells give rise to flagella, as well as to the achromatic figure, does not appear to be sufficient reason for regarding it as another organelle, since in some generations (cell divisions), both in animals and plants, the centriole gives rise only to the achromatic figure, while in other generations it gives rise to flagella and the achromatic figure. In such organisms, then, which are by no means few in number, the same body sometimes would be considered a centriole and at other times something else. What appears to be the best explanation of the situation is that in certain forms the centriole still possesses the ability to give rise to locomotor organelles in addition to the achromatic figure, while in other forms either it has never performed this dual function or this ability has been lost, or there is no longer any need for the centriole to produce locomotor organelles. If there are cells where the locomotor organelles arise from a body that does not produce the achromatic figure, the term blepharoplast appears applicable to this body.

L. R. Cleveland

Harvard University Medical School

BOOKS RECEIVED

BLANCHARD, RAOUl and RAYMOND E. CRIST. A Geography of Europe. Pp. xvii + 490. 188 figures. Holt. $3.50.

OUR improved type Jagabi Rheostats are appealing especially to those users of fine-adjustment current-regulating devices who are primarily influenced by design, quality of workmanship, ruggedness and performance. There are four sizes and 76 different ratings—carried in stock.

Please write for Catalog 1370-S.

JAMES G. BIDDLE CO.
ELECTRICAL AND SCIENTIFIC INSTRUMENTS
1211-13 Arch Street, Philadelphia, Pa.

MICRO and SEMIMICRO CARIUS FURNACE

For micro and semimicro determinations of halogens and sugar in organic compounds by the Carius method. Electric Heating maintains constant and uniform temperature. Strong Construction assures safety of operator. Monel Metal Shell will not corrode or tarnish. High Resistance Winding will not burn out on full line voltage. Capacity Four Bomb Tubes at one time.

Price—without rheostat $45.00
Price—with rheostat $49.00

AMERICAN INSTRUMENT CO., INC.
774-776 Girard St., N. W.
Washington, D. C.

LAMOTTE BLOOD SUGAR OUTFIT

For rapid estimation of blood sugar in determining sugar tolerance. ‡ Uses only few drops of finger blood. ‡ Permits tests at close intervals. ‡ Invaluable for infant cases. ‡ Accurate to 10 mg. of sugar per 100 cc. of blood.

Direct result without calculations. Only 20 minutes required for complete test. Complete with instructions, price $24.00, f. o. b. Baltimore, Maryland.

LAMOTTE CHEMICAL PRODUCTS CO.
418 Light Street, Baltimore, Md.
Have You Seen the BEAVER?

This modern dissecting knife consists of two simple parts: a replaceable blade, of surgical grade; a stout handle of stainless steel.

Those parts ingeniously interlock to provide all the rigidity of a one-piece tool. Yet the blade can be changed in two seconds.

Beaver Blades . . . of different shapes . . . have the keenest edge known to surgical steel.

If you would like to try this knife, send for set No. 1215, including handle, dummy blade, and packet of six assorted blades.

Postpaid for $1.75.

Use any or all of the blades with our compliments. If you are not enthusiastic, return the handle for full credit.

CAMBOSCO SCIENTIFIC COMPANY
Box S WAVERLEY, MASS. U. S. A.

THE HARRINGTON TIMER
Subdivides the Second

No. F793

The Harrington Timer consists of a self-starting synchronous motor which on 110 volts 60 cycle current rotates the shaft at the rate of ten times per second. An exceedingly simple and quick start-and-stop mechanism connects the shaft with a revolution counter, which has a capacity of nearly three hours in one-tenth second intervals. The device, therefore, permits the timing of intervals to a precision of 1/10th second.

To use the timer, the start lever is depressed at the beginning of the interval to be timed and at the end of the interval, the stop lever is depressed. The value shown by the counter is the elapsed time in seconds and tenth seconds.

F793 For 110 volts, 60 cycles
$25.00

Central Scientific Company
Laboratory Supplies
Apparatus and Chemicals
New York – Boston – Chicago – Toronto – Los Angeles

Leitz

Microscopes for all purposes.
Micro Projectors.
Microscopical Lamps.
Metallurgical Equipment.
Grinding-Polishing and Rock Cutting Machines for thin sections.
Projection Apparatus for Opaque Objects and Lantern Slides.
Leica Camera and Film Slide Projectors.

Expert repairing of Microscopes
Spindler & Sauppe, Inc.
Western Representatives
San Francisco Los Angeles
86 Third St. 811 West Seventh St.
ZEISS

ELECTRIC SODIUM LAMP

FOR MULTIPLE USE

HIGH INTENSITY

50 to 100 times higher than Sodium burner.

Constant Readiness

Simplicity of Manipulation

No flickering, no gas discharges.

The scope of Polarimetry, Refractometry and Spectroscopy is greatly enhanced by this new source of light.

Price $50.16 complete for 110 V. D.C. or A.C.

f.o.b. New York

CARL ZEISS, INC.

485 FIFTH AVENUE 728 S. HILL STREET

NEW YORK LOS ANGELES