The Thermionic Valve in Scientific Research: Sir Ambrose Fleming

The Electronic Theories of Lewis and Kossel: Professor William A. Noyes

Obituaries:
Lucian W. Chaney: Professor Franz F. Exner.
Samuel Henry Essay: Professor Ludwig Stolz Mayer. Recent Deaths

Scientific Events:
Oxford University Observatory; The David Dunlap Observatory; The Harvard Mineralogical Museum; The Cornell Meeting of the American Institute of Electrical Engineers; Honorary Degrees Conferred by Harvard University

Scientific Notes and News

Discussion:

Scientific Books:
Quantum Mechanics: Dr. Paul S. Epstein. The Genetics of Garden Plants: Dr. Alfred E. Clarke 640

Scientific Apparatus and Laboratory Methods:
Sand and Water Paradox: Dr. Isay A. Balinekin 642

Special Articles:
Molecular Rearrangements of Sulfanilides: Professor Treat B. Johnson and Maurice L. Moore. Isolation of a Crystalline Protein Possessing the Properties of Tobacco-Mosaic Virus: Dr. W. M. Stanley. Action Potentials During High and Low Frequency Stimulation of Medullated Nerve: Dr. McKeen Cattell and Dr. Harry Grundfest 643

Science News

SCIENCE: A Weekly Journal devoted to the Advancement of Science, edited by J. McKeen Cattell and published every Friday by

THE SCIENCE PRESS
New York City; Grand Central Terminal

SCIENCE is the official organ of the American Association for the Advancement of Science. Information regarding membership in the Association may be secured from the office of the permanent secretary, in the Smithsonian Institution Building, Washington, D. C.

THE THERMIONIC VALVE IN SCIENTIFIC RESEARCH

By Sir Ambrose Fleming
Emeritus Professor of Electrical Engineering in the University of London

The thermionic valve, which as a technical invention has made possible the great achievements of telephonic broadcasting and television, arose out of scientific research intended to elucidate certain observed phenomena in connection with the working of incandescent electric lamps in 1882 and 1883. It has also provided in itself a new and valuable instrument of research for physical investigation. The initial steps were taken in this invention when the writer as scientific adviser of the original Edison Electric Light Company of London began to study the projection of carbon atoms from the carbon filament of the then used Edison carbonized bamboo filament electric lamps, which, together with the carbonized cotton thread incandescent lamps of Swan, provided the first practical domestic electric lighting system for general use. It was soon found that these lamps had a black deposit made on the interior of the glass bulb in course of time which was fairly uniform and was doubtless due to an evaporation of the carbon, which substance like iodine and camphor and some others passes from the solid state to the gaseous without any intermediate liquid state.

On the other hand, in certain cases in which a line of no carbon deposit appeared on the bulb in the plane of the hairpin-shaped carbon filament, it was evident that the projection of carbon particles had taken place from one particular overheated point on the filament. This projection was due to a process of electric "sput-