Just Ready!

HEIL
The Physical World

By LOUIS M. HEIL, PH.D.
Associate Professor of Electrical Engineering and Physics, Ohio University

For several years a need of a textbook has been recognized in the field of so called "cultural" physics; a type of physics suitably adapted for those who are not going into science, but who desire to know something about physics and still not be frightened away by mathematical formulae and endless problems. During these same years there has been a growing demand also for a textbook in physical science; that is, one combining astronomy, physics, and chemistry mainly.

This textbook is an outgrowth of the attempt to meet these needs. The various units have been used in mimeographed form for several years. The book represents an attempt to guide the non-technical student into the "hows" and "wherefores" of physical science by a descriptive method in general; that is, to analyze physical science by means of accurate descriptions rather than to have the student briefly sketch through the "meat" of physics, (the accurate descriptions or the laws) and then to spend most of his time trying to find what formula will work this or that particular problem at the end of a chapter. It is granted that a certain minimum number of problems is necessary in order to show the student how the physical quantities are exactly related, because physics is an exact science. But it is the feeling of the author that well chosen and stimulating questions will succeed quite well in the analysis of physical science. After all, the students of journalism, English, the classics, are not going to spend their time making numerical solutions but, instead, they want to know something about the physical world in which they live.

For purposes of definiteness and somewhat for the feeling of completeness, the subject matter of the book has been divided into eleven units. A unit is not always strictly complete in itself, as some units depend, in a general way, on the subject matter of a preceding one. For example, in the discussion of heat, the assumption is made that the preceding unit treating of energy has been taken up.

The order of the units follows, in a general way, the usual order of the subdivisions of physics, namely; mechanics, molecular motion, heat, sound, electricity, light and modern physics, with the additional subjects on the meaning of science, astronomy, and chemistry, injected at the most logical places. There is, of course, always a question as to the logical order to be followed. Each unit, however, is complete enough to allow of any order of selection that may be adopted.

426 Illustrations. 566 Pages. Cloth $2.75

P. BLAKISTON'S SON & CO. INC., 1012 Walnut St., Philadelphia, Pa.
First Authorized English Translation

Theodor Brinkmann's

ECONOMICS

OF

THE FARM BUSINESS

With an introduction and notes by Elizabeth Tucker Benedict, Heinrich Hermann Stippler, and Murray Reed Benedict.

Now available to students of agricultural economics and farm management, for the first time, in English.

Pp. ix + 1-163 index

Social Science Research Council
Advisory Committee on Social and Economic Research in Agriculture.
Translation Series, No. 2

Price, cloth, $2.00

Published by
UNIVERSITY of CALIFORNIA PRESS
BERKELEY : : CALIFORNIA

AMERICAN PHILOSOPHICAL SOCIETY PUBLICATIONS

SIWALIK MAMMALS
IN THE AMERICAN MUSEUM OF NATURAL HISTORY
(Transactions, New Series, XXVI)

By
EDWIN H. COLBERT

Contents: Introduction, Geological Considerations, Mammalian Faunas of the Siwalik Series, American Museum Siwalik Fossil Localities, Systematic Descriptions and Discussions—Primates, Rodentia, Lagomorpha, Carnivora, Tubulidentata, Proboscidea, Perissodactyla, Artiodactyla; Migrations of Certain Mammals to and from the Siwaliks, General Summary and Conclusions; Bibliography; Index.

401 pages (9x12), 198 figures, Paper, $5.00

Order from
UNIVERSITY OF PENNSYLVANIA PRESS
Philadelphia

JOURNAL OF MORPHOLOGY

Published by The Wistar Institute
C. E. McClung, Managing Editor, University of Pennsylvania

Vol. 59

Contents for March, 1936

1. G. CARLSON. The intergeneric homology of an atypical euchromosome in several closely related Acridinae (order Orthoptera). One text figure and three plates.

Wm. F. DILLER. Nuclear reorganization processes in Paramaecium aurelia, with descriptions of autogamy and "hemixis." Two text figures and eight plates.

W. P. ABERCROMBIE. Studies on cell number and the progression factor in the growth of Japanese Beetle larvae (Popillia japonica Newman). Two text figures.

Wm. O. PUCKETT. The effects of x-radiation on limb development and regeneration in Amblystoma. Fourteen text figures and three plates.

Wm. ETKIN. The phenomena of anuran metamorphosis. III. The development of the thyroid gland. Two text figures and one plate.

R. G. MEADER. The innervation of the muscle of accommodation in the eye of the teleost, Holocentrus. Two text figures.

P. G. ROOFE. The histology of the paraphysis of Amblystoma. Eight text figures.

D. LUDWIG AND W. F. ABERCROMBIE. Histological changes accompanying the growth of the mid-intestine of Japanese beetle larvae (Popillia japonica Newman).

Price $12.00 per volume, Domestic; $12.50 per volume, Foreign

Issued quarterly

Many early volumes are still available. Prices upon request

Address subscriptions to
The Wistar Institute of Anatomy and Biology
36th Street and Woodland Avenue
Philadelphia, Pa., U. S. A.
LABORATORY PRECISION IN THE FACTORY

PRODUCES TRADITIONAL SPENCER QUALITY

THE Star Test

FOR SPENCER MICROSCOPE OBJECTIVES

The research department of Spencer Lens Company has devised special instruments for control of factory routine which show the quality of design and workmanship of Spencer optics.

The "Star" Test provides a laboratory method of proving precision of lenses, not only individually but as a complete optical system in the Spencer objectives.

The image of a bright point of light, formed by the objective under test, is examined and interpreted by an expert. This method is so sensitive that any errors in the objective optics are immediately and clearly apparent. If errors should be found, the expert is able to interpret the image to determine the source of the error. Corrections can then be made and the recurrence of such errors eliminated.

Thus, this highly scientific inspection of Spencer objectives is your guarantee of optical perfection . . . our guarantee that you will always receive traditional Spencer quality.

Spencer Lens Company
Buffalo New York
OPEN-DIAL SWITCH RESISTANCE BOXES

When electrical resistance is measured within small limits of error, the measuring operation is greatly facilitated by the use of these Boxes as adjustable standards of d-c resistance.

Resistors have limit of error of 0.05 per cent of their range, except for tenth-ohm resistors, which have limits of 0.1 per cent. Decades and resistors can be checked against each other, because there are ten steps in the lowest decade of each Box; other decades have nine each. Resistors are protected against heating because all except tenth-ohm units are on metal spools that conduct heat to switch-studs, which dissipate it. One watt may be dissipated by each resistor in use.

Residual resistance is extremely low because internal leads are heavy and switch resistance is very small. Each switch-brush has six leaves, which contact ring and studs at a wiping angle that prevents grooving and thereby assures permanent, evenly-distributed brush pressure. Variations in resistance as switches are turned from zero are negligible, even in high-precision measurements:

<table>
<thead>
<tr>
<th>List No.</th>
<th>Dials</th>
<th>Total resistance, ohms</th>
<th>Decade steps</th>
<th>Limit of error, per cent, in resistors</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>All but 0.1 ohm</td>
<td>0.1 ohm</td>
</tr>
<tr>
<td>4710</td>
<td>3</td>
<td>100</td>
<td>$10 \times 0.1 \times (1+10)$</td>
<td>0.05</td>
<td>0.1</td>
</tr>
<tr>
<td>4711</td>
<td>3</td>
<td>1000</td>
<td>$10 \times 1 \times (10+100)$</td>
<td>0.05</td>
<td>0.1</td>
</tr>
<tr>
<td>4712</td>
<td>3</td>
<td>10000</td>
<td>$10 \times 10 \times (100+1000)$</td>
<td>0.05</td>
<td>0.1</td>
</tr>
<tr>
<td>4715</td>
<td>4</td>
<td>1000</td>
<td>$10 \times 0.1 \times (1+10+100)$</td>
<td>0.05</td>
<td>0.1</td>
</tr>
<tr>
<td>4716</td>
<td>4</td>
<td>10000</td>
<td>$10 \times 1 \times (10+100+1000)$</td>
<td>0.05</td>
<td>0.1</td>
</tr>
<tr>
<td>4720</td>
<td>5</td>
<td>10000</td>
<td>$10 \times 0.1 \times (1+10+100+1000)$</td>
<td>0.05</td>
<td>0.1</td>
</tr>
</tbody>
</table>

LEEDS & NORTHUP COMPANY
4926 STENTON AVENUE
PHILADELPHIA, PA.

MEASURING INSTRUMENTS, TELEMETERS, CONTROL EQUIPMENTS, HEAT-TREATING FURNACES
FORCEPS

Ithasbeen
and
needle
operations
is
the box which
and
to
building
scale
though
box, which
end,
front

The reflecting box was constructed out of a preparation board (wall board), ¼" thick, and was made with tight joints inside. The framing (F, Fig. 1) is all outside and was made of ½" × 24" pieces with lapped corners, nailed. (It could be so constructed as to fold up when not in use.) The inside dimensions of the box, which can be varied, are as follows (Fig. 1): front width, open end, ab, 30"; back width, closed end, df, 19¾"; front height, open end, be, 24½"; back height, closed end, cd, 19¾"; direct open depth, gh, 17¾"; de, 18½"; bc, 18¾". The drawing is not made to scale and the dimensions, as given, are all inside, even though some letters are placed outside the box for facility in drawing.

It might, also, be possible to modify the plan of this box and the method of observation of the image by building two boxes similar to the one described above, except that the two boxes, which would be placed back to back, would have a common partition between them. Then, by cutting an aperture in the common partition between the deep ends of the two boxes thus placed, and by covering this aperture with a translucent linen screen or with other translucent material, it might be possible to view the image through the open end of the box which faces away from the projector.

The University of Vermont

FORCEPS DESIGNED FOR SKIN SUTURING

In suturing together skin edges after incisions for operations on laboratory animals such as guinea pigs and albino rats, it is often extremely difficult to penetrate the skin with the needle. When the skin edge is caught in the ordinary forceps, the skin tends to be pushed around the side of the forceps and the needle can not thus retain its right angle approach. It has been our custom to use Keith needles, which must be very sharp to pierce the tough dorsal skin in flank operations on the rodents mentioned above.

In using the forceps described herewith (see cuts), either one or both edges of the skin may be caught and the needle put through with ease, after which the forceps can be easily removed, the needle passing through the opening leading outward from the needle hole. Fig. 1 depicts an adaptation of an ordinary forceps, which has been found to work perfectly well. Fig. 2 is the proposed design of forceps of this type for the trade.

G. Lombard Kelly

A NOTE ON LEVEL CONTROL IN FUNNELS

In a recent issue of Science, Wean has described, with an excellent illustration, a flow control system which is almost an exact replica of an apparatus used by the writer during the world war for control of level in a funnel in filtration of solutions made from Ca(OCl)₂ suspension and Na₂CO₃ in preparation of Dakin’s hypochlorite solution. The apparatus was demonstrated to classes at the War Demonstration Hospital on the Rockefeller Institute grounds in New York City, but was made obsolete for the purpose by the chlorine gas method. While in no way wishing to detract from Wean’s contribution, it may be worth while to record this other use as such need may occur again. The device has been used also in the writer’s laboratory to control level in water thermostats. It is particularly valuable where suspended matter might clog a float-operated valve. The use of a Hoffman clamp on the return air-line for adjustments is sometimes helpful to minimize surges.

William R. Thompson

BOOKS RECEIVED

1 From the Department of Anatomy, University of Georgia School of Medicine, Augusta, Georgia.
Chemical Microscopy requires an instrument of greatest versatility. The Leitz Chemical Microscope was designed so that through simple adaptation of accessories it can be used for practically every method of investigation such as:

1. Transmitted light, polarized or non-polarized.
2. Darkfield and Ultropak illumination.
3. Reflected light, polarized or non-polarized.
4. Observations at high temperatures.

This microscope of greatest flexibility and highest precision is offered at a moderate price. Write for Bulletin No. 8-O.

E. LEITZ, INC., Dept. O.
60 East Tenth Street, N. Y. C.