The Application of Isotopes to the Study of Intermediary Metabolism: RUDOLF SCHÖNHEIMER and D. RITTENBERG 221

Obituary:
Arthur Ware Slocomb; PROFESSOR CAREY CRONEIS. Recent Deaths and Memorials ... 227

Scientific Events:
The Imperial Institute; The Reprinting of Historical and Scientific Books and Monographs; Flood Control Research at Cornell University; Wild Life Week; Award of the Medal of the New York Academy of Medicine ... 227

Scientific Notes and News ... 230

Discussion:

Reports:
Annual Tables of Constants and Numerical Data: PROFESSOR HUGH S. TAYLOR ... 235

Special Articles:

Scientific Apparatus and Laboratory Methods:
Exposure Meter for Cinephotomicrography and Still Photomicrography: FRANCIS W. BISHOP. Longevity of Plant Cells in Tissue Cultures: PROFESSOR CARL D. LARUE ... 239

Science News .. 8

SCIENCE: A Weekly Journal devoted to the Advancement of Science, edited by J. McKEEN CATTELL and published every Friday by

THE SCIENCE PRESS
New York City: Grand Central Terminal
Lancaster, Pa. Garrison, N. Y.
Annual Subscription, $6.00 Single Copies, 15 Cts.

SCIENCE is the official organ of the American Association for the Advancement of Science. Information regarding membership in the Association may be secured from the office of the permanent secretary, in the Smithsonian Institution Building, Washington, D. C.

THE APPLICATION OF ISOTOPES TO THE STUDY OF INTERMEDIARY METABOLISM

By RUDOLF SCHÖNHEIMER and D. RITTENBERG
DEPARTMENT OF BIOLOGICAL CHEMISTRY, COLUMBIA UNIVERSITY

The number of organic compounds involved simultaneously in the multitude of diverse chemical reactions in the living organism is exceedingly large. Substances are continually being degraded, while their split products are linked together again to form new compounds, and all these reactions and their reaction products are held in equilibrium so that the composition of the cell and the organism stays constantly within narrow limits.

By adding to this complicated system an excess of one of the components, it is in many cases possible to follow its conversions, provided one has some general idea as to its fate. Herein lies the principle of the classical balance experiments. In order to determine the fate of one of the constituents of the organism, the substance is given in large quantities and the tissues or excreta are investigated for the presence of related compounds in abnormal amounts. This method has proved to be extremely valuable, and most of our knowledge of intermediary metabolism is based on experimentation of this kind. Unfortunately this method has theoretical limitations. Many body constituents, especially the more active ones, are never produced in excess of the animal's requirements, even if the building material is available in large quantities. Another obstacle which sometimes makes the interpretation of such balance studies extremely difficult is the known fact that one substance may induce the formation of others without itself being involved in the synthesis. Thus, for instance, insulin induces glycogen formation, and fat induces an increased for-