LOGIC AND PROBABILITY IN PHYSICS

By Dr. CHARLES GALTON DARWIN

M A S T E R O F C R I S T ’ S C O L L E G E

The history of the development of physics in the first quarter of the twentieth century will rank as one of the greatest in the advancement of knowledge, but it will also rank as one of the most curious in the history of human thought. In 1901 Planck started the quantum theory. Even this was curious. He was trying to find out the law of complete radiation by the use of ordinary statistical methods, and observed that he got his answer at what should have been the last stage but one of his work. The last stage would have involved proceeding to a limit, and he found that he got the experimental answer without doing so, and an absurd answer if he did. The work went rather deep into statistical theory and there were many for long afterwards who were not convinced of its compelling force, but it was the great merit of Planck that he knew that he had got something involving a quite revolutionary idea—the quantum. In succeeding years other phenomena were seen to involve the same revolutionary idea: Einstein's theory of the photoelectric effect and of the ionization produced by x-rays, his theory of specific heats, later improved by Debye, and Bohr's theory of spectra. All these things fitted in quite obviously with the quantum, but quite as obviously they violently contradicted the physics of the nineteenth century. What should a man think about a beam of light which according to Einstein had to be composed of arrows, whereas a hundred years earlier Fresnel had proved that it was a sys-