Friday, March 17, 1899.

CONTENTS:
The Objective Presentation of Harmonic Motion (with Plate II.) : Professor Carl Barus.............. 385
The Work of the U. S. Fish Commission....................... 406
Engineering and the Professions in Education : Professor R. H. Thurston...................... 407
Scientific Books —
Societies and Academies:—
The Geological Club of the University of Minnesota: Dr. F. W. Sardeisen. The Botanical Club of the University of Chicago. Entomological Society of Washington : Dr. L. O. Howard. The Academy of Science of St. Louis : Professor William Trelease......................... 412
Discussion and Correspondence:—
The Importance of Establishing Specific Place-Names : Professor Chas. B. Davenport. Identity of Common and Labrador White-Fish : Dr. Tarleton H. Bean. A Date-Palm Scale Insect : Professor T. D. A. Cockerell. The Choice of Elements : T. D.............. 415
Astronomical Notes:—
Tuttle's Comet; A New Star in Sagittarius : Professor E. C. Pickering......................... 417
Notes on Physics:—
Electric Wire Waves; A New Indicator for Electric Waves ; The Electric Discharge in Rarefied Gas ; Brilliance of Light Sources: W. S. F. The Magnetization of Iron ; General : A. St. C. D.... 418
Scientific Notes and News............................................. 420
University and Educational News................................... 424

THE OBJECTIVE PRESENTATION OF HARMONIC MOTION.

CONTENTS.
Description of a Wave Machine.
1. Introductory.
2. General construction.
3. Cam axles.
4. Levers, riders and balls.
Action of the machine.
5. Method of compounding.
6. Plane transverse waves.
7. Transverse space waves.
8. Compressional space waves.
9. Rotary polarization.

Experiments.
11. Do. Space waves.
I. Compound S. H. M’s coplanar of the same wave-length.
13. Plane polarization curves.
14. Waves of constant amplitude.
15. Waves of varying amplitude.
II. Preceding case (I) with additional velocity superimposed on either wave-plane.
16. Beats.
17. Döppler’s principle.
III. Preceding cases (I and II) with the velocity of either wave-train reversed.
19. Wandering nodes.
IV. Component S. H. M’s at right angles to each other, of the same amplitude and wave-length.
20. Elliptic polarization.
V. Preceding case (IV) with component velocities and periods unequal.
21. Incommensurable periods.
VI. Preceding case (IV) with either component velocity reversed.