Outstanding Wiley Successes in the Sciences

3 Biology

STRAUSBAUGH and WEIMER'S

GENERAL BIOLOGY
A TEXTBOOK FOR COLLEGE STUDENTS

By PERRY D. STRAUSBAUGH, Professor of Botany,
West Virginia University,

and BERNAL R. WEIMER, Professor of Biology,
Bethany College, West Virginia

Making great strides forward

Hailed as "a particularly strong book for a general course in college biology," this book won numerous adoptions immediately upon publication in 1938. The list has grown steadily, until now it totals seventy, truly an excellent record.

"The best balanced and most readily teachable book in the field"

writes Professor Raymond J. Pool of the University of Nebraska. He amplifies his remarks, in a review in Science:

"It seems to us that the new book by Strausbaugh and Weimer more nearly represents the proper point of view and more nearly furnishes the material for a given course in introductory biology for colleges and universities than any book we have seen. . . . The pedagogy and style are fitted to the undergraduate student. Fundamental phenomena and conceptions are not completely buried in technicalities."

555 pages 284 illustrations 6 by 9 $3.75

JOHN WILEY & SONS, INC., 440-4th AVE., NEW YORK
COSMIC RAYS

Copyright, 1940, by Science Service

The purpose of our cosmic ray studies just completed in India was to get as accurate measurements as possible of the total cosmic-ray energy which gets into the earth at a series of relatively closely spaced latitudes. We have only relatively recently perfected the technique of making these measurements through sending sounding balloons with recording instruments essentially to the top of the atmosphere, and this made it imperative to measure these energies as a function of latitude, and that for the following reason:

Every one knows that the earth is a great magnet with its poles near the north and south geographic poles, their distance apart being, therefore, about 8,000 miles. This means that the earth's magnetic field stretches fairly far out into space, so that it should be easily detectable, say, 20,000 miles above the earth's surface. In this respect it contrasts sharply with the atmosphere, which may be likened to a thin skin, say, 100 miles thick, hugging closely to the surface of the earth.

Cosmic ray electrons in trying to push their way through this magnetic field experience a blocking effect, so that at a given latitude it requires an energy of the incoming cosmic ray particles of a definite and computable amount to get through normally and strike the earth's surface at all. By measuring, then, the amount of energy that actually gets through, say, at the magnetic equator, where it takes 17 billion electron volts to get through vertically, and at, say, Agra, where it takes 14½ billion volts to get through, we can find just how many electrons are shooting through space and trying to get through with energies in the range between 14½ billion and 17 billion volts.

In other words, by measuring the total amount of cosmic ray energy coming into the earth at a series of latitudes, say, ten degrees apart in going from the equator to the pole, we can determine just what is the distribution of energy among the superpower particles that are plunging through the heavens.

The importance of knowing this if we want to know how the cosmic rays are formed needs no argument. We went to India with very considerable equipment, then, for the sake of finding through balloon flights just how much energy comes in at the equator, how much at Agra in the central part of India, and how much at Peshawar in the northern part of India. It will take us some time to work up the results, and we are at present not concerned whether they support particular conceptions as to the origin of cosmic rays, or not. They must in any case give us either negative or positive evidence with reference to any particular conception.

We made, all told, some 45 flights in collaboration with the Indian Meteorological Service, spending about a month in Agra in central India, eight days in Peshawar right under the Khyber Pass, the northernmost point in India, and nearly a month at Bangalore in south India close to the magnetic equator. We had most extraordinary cooperation from the British Indian Meteorological Service, which generously supplied us with all the hydrogen needed and much assistance in these observations.

We shall not know what precise conclusions to draw from these observations until we have worked up our data, which will take some time; but we are sure that we got the data that we went to India to secure, and it is just as significant whether the answer is positive or negative with respect to any particular conception. It is just as important to eliminate this theory or that as it is to support that theory or this.—ROBERT A. MILLIKAN.

THE NEW CYCLOTRON OF THE UNIVERSITY OF CALIFORNIA

Copyright, 1940, by Science Service

The Rockefeller Foundation of New York City has given the University of California the sum of $1,150,000 for the construction of a new and much larger cyclotron or atom smasher to be used in the radiation laboratory, of which Professor Ernest O. Lawrence is director. The university must raise $250,000 from other sources to obtain this gift.

The plans for the new cyclotron call for a mechanism, or a fine integration of mechanisms, that will produce energies in excess of 100 million volts, as compared with the 33 million volts produced by the present 60-inch cyclotron. The weight of the new cyclotron will be 4,900 tons, or more than 20 times heavier and bigger than the present instrument.

The present cyclotron, the largest in the world, is said to have permitted striking new advances in the knowledge of the atom and also in the fields of biology and medicine, particularly through its production of artificially radioactive substances and its potent neutron rays. As compared to the 60-inch magnet of the present cyclotron, the magnet of the new instrument will measure 184 inches. It is hoped to produce a deuteron beam of 140 feet, as compared with the five-foot beam obtainable at present. It will be 58 feet long and 15 feet wide and will have an over-all height of 36.8 feet, of which 11.8 feet will be underground. From the emplacement the superstructure will rise to 25 feet. The estimated weight of the steel that will be used in construction is 4,500 tons, to which the copper windings will add 400 tons. A feature will be the underground location of the control room, 150 feet from the cyclotron itself.

The new cyclotron will resemble the present medical cyclotron, but in details it is planned to be the most distinctive engine of its kind. The designers in the radiation laboratory state that, because it is the first of its size ever planned or even contemplated, its actual operation may compel changes that can not be predicted at present.

At this stage its objectives are of a purely physical nature, with the structure of matter as the particular problem to be solved. However, as Professor Ernest O.
NEW

TEXTBOOK OF PHYSIOLOGY

By

WILLIAM D. ZOETHOUT, Ph.D., and W. W. TUTTLE, Ph.D.

The new Seventh Edition of "Textbook of Physiology" represents an extensive revision of this popular text. Every chapter has been thoroughly gone over, revamped to conform to present day trends in teaching. The desirable features of the previous editions have been retained but the new material incorporated in the Seventh Edition makes the book more readily adaptable to classroom use than any of the previous editions. The latest information on vitamins, endocrines, digestion, the heart, and blood vessels is included. Furthermore, the complete coverage of every phase of physiology makes this edition the ideal text.

The material for the Seventh Edition is arranged particularly for a textbook—not a reference book. That is why the sequence received special attention; why the material is presented in an easily understood manner; why so much attention was given to demonstrating the interdependence of organs upon each other; why there is an application of principle and theory to every day life.

The style of the book is clear, exact, and explanatory, and the illustrations supply graphic impressions that will not easily be forgotten.

THE C. V. MOSBY COMPANY

3525 PINE BOULEVARD

ST. LOUIS, MISSOURI
Lawrence, director of the radiation laboratory, points out, no one knows what new objectives it may light up or what new problems it may produce or solve.

A tentative site has been selected in the hilly section of the campus, to the east of the present radiation laboratory. Plans for the building also are in the tentative stage, but it is known that it will be devoted solely, in its beginnings at least, to the physical aspects of cyclotron research. There will be no biological laboratory as in the present plant.

ELECTRON PHOTOGRAPHS OF MOLECULAR STRUCTURE

Copyright, 1940, by Science Service

By whirling a heart-shaped rotating disk in front of a photographic plate against which electrons are falling, a new way has been found of making what might be called architectural blueprints from which the structure of molecules can be worked out. Professor Peter Debye, of Berlin, speaking at the meeting of the American Chemical Society in Cincinnati, described the new feat of getting photographs of the scattering of electrons in gaseous chemical compounds. These "bull’s-eye" pictures—each consisting of a black spot with a series of concentric rings—enable chemists to calculate the structure of the molecules and help determine directly the distances between atoms in the molecule.

Professor Debye, who is director of the famed Kaiser Wilhelm Institute of Physics, stated that his twenty-four-year-old son is the inventor of the new advance in molecule portraiture. Professor Debye is now a visiting lecturer at Cornell University. His son had planned to present his new apparatus for his doctorate dissertation at Berlin this year but was in America when the war started last September. Knowing that his father was coming to America, he stayed over and is now in Ithaca, too.

Getting bull’s-eye ring pictures of molecules is done by shooting electrons, with potentials of 30,000 volts, down a small vacuum chamber where they pass through the molecular gases being studied. These gases scatter them into the characteristic rings. The nearer the atoms are together in the molecule, the greater is the angle of scattering and the larger are the rings. The scattered electrons are allowed to fall on photographic plates and make permanent pictures.

The new procedure is to place a heart-shaped rotating disk just in front of the photographic plate on which the electrons fall. The size of the opening in this disk and its outside pattern enables Professor Debye to obtain the ring pictures with the outer rings much more clearly exposed and with better uniformity. In older ring pictures taken with other methods the center of the rings became severely over-exposed and darkened if scientists attempted to make clear the much fainter outer rings.

Professor Debye said that the 30,000 volt electrons produce waves corresponding to only a twentieth of an Angstrom unit of length. One Angstrom is one one-hundred-millionth of a centimeter. It is about the distance separating atoms in the molecules which Professor Debye studied. These molecules have been carbon tetra-chloride, carbon disulfide, acetylene and ammonia.—Robert D. Potter.

INFRA-RED RECORDS OF THE ECLIPSE MADE IN TEXAS

Copyright, 1940, by Science Service

The dimmed sun’s rim was photographed and studied in the light of its invisible infra-red radiation, to get hitherto unrecorded data on the nature of its outer envelope of gases, during the annular eclipse on Sunday, April 7. The unique observations were made by an expedition from the McDonald Observatory of the Universities of Texas and Chicago, on a mountain top in the remote and rugged Big Bend country, 85 miles from the nearest railroad.

Complete success under a cloudless sky was reported by Dr. C. T. Elvey, leader of the expedition, although details of the results will not be available until after many days of computation and measurement. Instruments used were a four-foot telescope with a six-inch lens, equipped with filters to cut out all but the infra-red wavelengths, and a thermocouple hookup to translate heat from the radiation into electric impulses which were recorded on photographic paper. With Dr. Elvey were Dr. Fred T. Rogers, Jr., of Yerkes Observatory, who designed the special equipment, and Walter Linke and Arch Garner, both of the McDonald Observatory.

An expedition from the American Museum of Natural History, led by Wayne Faunce, vice-director, observed the eclipse from the top of a tall building in Jacksonville, Fla., and from an airplane at a three-mile altitude. Although the effect known as Bailey’s beads, caused by the mountain peaks on the moon nicking the edge of the sun, could not be visually observed, it was picked up by photographs taken at the ground station.

The expedition from Brown University, led by Professor C. H. Smiley, which went to Thomasville, Ga., had the hardest luck of the day. Rain fell throughout the entire eclipse period.

While astronomers were watching events in the heavens, physicists at the Carnegie Institution of Washington were making observations of its effects closer to earth. They were concerned with changes in the ionization, or electric charges, of the "E" and "F" layers of the earth’s "radio roof," which affect radio wave reflection and hence range and clarity of transmission.

Dr. L. V. Berkner, of the Department of Terrestrial Magnetism, reported that ionization of the "E" layer dropped sharply at the beginning of the eclipse, held steady until its end, then rose again to higher than normal level. In the "F" layer, ionization held steady until 15 or 20 minutes after the beginning of the eclipse, then dropped about 20 per cent., rising again as the shadow passed off the sun.

THE PRODUCTION OF ARTIFICIAL HORMONES

LARGE-SCALE laboratory production of artificial hormones necessary for reproduction and maintenance of life is foreseen as a result of the total synthesis of a new chemical announced by Drs. Lewis W. Butz, Adam
The Foundations of Science

By H. POINCARÉ

Pp. xi + 553.

THE SCIENCE PRESS

Grand Central Terminal New York, N. Y.

O S I R I S

Studies on the History and Philosophy of Science and on the History of Learning and Culture

Series of supplementary volumes to Isis

Edited by GEORGE SARTON, D.Sc.

Seven volumes have already appeared. Subscription to vol. 8 (1940) is open. The edition is limited and relatively small. Libraries wishing to secure a copy should send their subscription to these volumes (or a continuation order for the whole series) to Dr. A. Pogo, Harvard Library 189, Cambridge, Mass.

The price is $5 per volume of the average size of Isis volumes (except vol. 1 costing $6).

The vols. of Osiris will contain, in general, series of articles devoted to a single subject, and also longer memoirs. It is proposed to publish one volume a year, or exceptionally two, but not more.

Isis will continue to be a quarterly journal containing shorter articles, reviews, notes and correspondence and critical bibliographies. The removal of the longer articles to Osiris will increase the variety and attractiveness of Isis.

THE SCIENTIFIC MONTHLY

J. McKEEN CATTELL, F. R. MOULTON and WARE CATTELL, Editors

CONTENTS FOR APRIL

SCIENCE AND SOCIAL EFFECTS: THREE FAILURES. President ISAIAH BOWMAN.
SEVENTY YEARS OF SUEZ. Professor W. O. BLANCHARD.
MANAGEMENT OF AQUATIC WILDLIFE IN THE GREAT BASIN. Professor ANGUS M. WOODBURY.
DEVELOPMENT AND MANUFACTURE OF OPTICAL GLASS IN AMERICA. M. HERBERT EISENHART and EVERETT W. MELSON.
ANALYSIS OF WORLD’S FAIRS’ HEARING TESTS. H. C. MONTGOMERY.
ORGANISM, SOCIETY AND SCIENCE. I. Professor R. W. GERARD.
MUSICAL INHERITANCE. Professor CARL E. SEASHORE.
THE "CHAIR" FOR INSECTS? Dr. ROBERT C. MURPHY.
"MIND IS MINDING," BUT OR STILL. But, Professor JARED S. MOORE; Still, Professor LESLIE A. WHITE.
BOOKS ON SCIENCE FOR LAYMEN: Children's Science Books Published in 1939; Photographing the Invisible; The Life of the Mind; The Rise of Civilization.
THE PROGRESS OF SCIENCE:
Centenary Celebration of the Wilkes Exploring Expedition; National Zoological Park Expedition to Liberia; Importance of Grassland Reserves; Endocrine Glands and Their Disorders; Dispelling Fog; Average Use of Mechanical Power.

PUBLISHED FOR THE AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE

BY THE SCIENCE PRESS

LANCASTER PA.—GRAND CENTRAL TERMINAL, NEW YORK CITY—GARRISON, N. Y.

Yearly Subscription $5.00 :: :: :: Single Copies 50 cents
Gaddis, Eleanore W. J. Butz and Russell E. Davis, of
the U. S. Department of Agriculture.

The new chemical is a steroid, like the sex hormones
and other chemicals which animals and plants construct
from the food they eat. This particular steroid, stera-
diene-tetra-carboxyllic acid, has never actually been iso-
lated from the body. Dr. Butz and associates created it
from acetylene, cyclohexanone, cyclopentanone and
maleic anhydride, chemicals produced commercially from
coal, water and limestone.

The synthetic sex and adrenal gland hormones which
other scientists have made in their laboratories have been
made from a simpler chemical isolated from the body
and built into chemicals identical with the hormones.
Because the Butz synthesis of the new steroid does not
depend on first isolating a starting chemical from the
body, it is expected to provide a quicker method of mak-
ing the artificial hormones and also compounds related to
cancer-producing substances used in the search for
greater knowledge about cancer.

Details of the synthesis, which is part of a project
designed to study factors concerned in reproduction in
farm animals and was supported by funds provided under
the Bankhead-Jones Act of 1935, appear in the current
issue of the Journal of the American Chemical Society.

About 20 steroids have previously been synthesized in
the laboratory by other workers in this country and
abroad. These steroids have one feature in common,
chemically: at least one of the four rings of the carbon
skeleton has always been of a benzenoid type. Of the
many steroids which have been found in animals and
plants, less than 10 contain these benzenoid rings. Thus
steroids of other types such as the adrenal and sex hor-
mones mentioned, can not be easily made from the ben-
zenoid type by known methods.

Dr. Butz pointed out that the newly developed method
is able to produce steroids without these rings, the type
that, according to present knowledge, predominates in
nature.

A NEW CHEMICAL REMEDY

Copyright, 1940, by Science Service

Dramatic and speedy recoveries of five babies desper-
ately ill with staphylococcus throat infections which in
three cases required an artificial opening into the wind-
pipe so that the babies would not choke to death were
achieved by treatment with the new chemical remedy,
sulfamethythiazol, by Donald Weisman and Hollis
Russell, of St. Agnes Hospital, White Plains, N. Y.,
reported at a meeting of the New York Academy of
Medicine.

Under the best possible conditions before the new
chemical was available not more than half of the patients
suffering from this infection of the windpipe, larynx and
bronchi recovered, and the younger the child, the greater
was the danger. Mortality from severe staphylococcus
infections has been as high as 90 per cent.

An older boy with running ears, mastoid involvement
and general blood stream infection with the staphylo-
coccus germs recovered without operation under treat-
ment with the sulfamethythiazol which was also credited
by the White Plains physicians with speeding the recov-
ery of another boy with severe osteomyelitis of the right
thigh bone.

Peripheral neuritis, which has been reported in about
one out of 100 patients following use of the new chemi-
cal remedy, was not observed in these children. Drs.
Weisman and Russell suggest, on the basis of their ex-
perience and reports from other clinics where large num-
bers of children suffering from staphylococcus infection
have been treated with sulfamethythiazol, that the neu-
ritis may be an affliction of adults only and that infants
and children may have a greater tolerance for the chemi-
cal. Because of the danger of this complication, how-
ever, they advise using sulfamethythiazol only under
carefully controlled conditions and only in very severe
cases of staphylococcus infection.

ITEMS

April is the safest month of the year. The average
of 285 deaths per day from accidents during other parts
of the year drops to 251 in April, according to statistics
issued by the Metropolitan Life Insurance Company.
The reason for greater safety in April is that it is an
in-between season, after the time when falls on the ice,
smothering from too many covers or gas asphyxiation
are hazards and before swimming, boating and lightning
accidents begin to take their toll.

Mauna Loa, Hawaii’s giant volcano reported in re-
newed eruption, has a reputation as a very gentle dragon;
it has never killed anybody, although there is a history of
between 25 and 30 outbreaks of varying intensity
since white men first began to take note of its activities
in 1882. Like Hawaiian volcanoes generally, Mauna Loa
is not addicted to the violent explosive type of outbursts
that blast whole islands with clouds of deadly gas, as did
Mont Pelée in the West Indies in modern times, or
smother cities with showers of fast-falling ash, as did
Vesuvius in antiquity. It just quietly pours out great
wells of lava, which flow down its flanks like enormous
sluggish rivers. These may destroy houses, plantations,
whole villages if they happen to be in the way, but the
population has always had time to escape.

The theory that petroleum is probably being formed
on the earth on a substantial scale, in contrast to the
usual assertion that petroleum supplies are limited and
irreplaceable, was advanced by Dr. Gustav Egloff, direc-
tor of the Universal Oil Products Company, at the Cin-
cinnati meeting of the American Chemical Society.
He said, “It seems altogether likely that nature is con-
tinually producing more oil underground, perhaps at a
fast rate than gas pressure or pump stroke can bring it
to the earth’s surface.” Dr. Egloff states that all the
evidence for his theory is not known, but he adds that
the lakes, rivers and oceans abound in fish and mollusks
closely resembling those found in oil-bearing formations.
Dr. Egloff said that in the last few years the oil industry
had been discovering new oil reserves at the rate of 1,000-
000,000 barrels a year in excess of that actually used.
Total reserves now known amount to 20,000,000,000 bar-
rels or 16 years’ supply. He forecasts that the depth of
oil wells would increase from the present two miles to
three miles and eventually to four and five miles below
the surface of the earth.
Scientists, authors, lecturers, travelers and thousands of men and women in all walks of life have mastered a new language in their own homes by the world famous LINGUAPHONE METHOD.

Amazingly simple, thorough, sound, no smattering. 27 languages available.

Send For FREE Book.

LINGUAPHONE INSTITUTE
30 R.C.A. Building New York City

LaMOTTE OUTFIT FOR DETERMINING SULFANILAMIDE IN BLOOD AND URINE

Developed for use in routine daily examinations. Quantitative result obtained by comparing the treated specimen with standards of known concentration. Only 0.2 cc of finger blood and urine are required. Both tests may be completed within 20 minutes. Outfit complete with full instructions, price $22.50 F.O.B. Baltimore, Md.

LaMotte Blood Chemistry Service includes a series of similar outfits for conducting the following accurate tests—Blood Urea—Icterus Index—Phenolsulphonphthalein—Urine pH—etc.

LaMotte Chemical Products Co.
Dept. "H" Towson, Baltimore, Md.
PARAGON SEALING COMPOUND

For Museum Jars

- No flame necessary—always ready for instant use.
- Easy and clean to use—simply press from tube direct to sealing surface of jar.
- Not affected by Formaldehyde, Glycerine, Kyserling or Alcohol.
- Jars are easily opened when necessary with use of flame.
- Paragon Sealing Compound for Museum Jars is semi-liquid at room temperature, in the tube—hardens at room temperature outside the tube—softens after hardening under hot tap water.
- Priced at $1.75 per tube, sufficient for sealing 100 average size jars.

Send inquiries and orders to Dept. A19

Manufactured exclusively by

PARAGON C. & C. CO.
215 East 149th Street, New York, N. Y.

SLOW SPEED—HIGH TORQUE

For Many Laboratory Uses

No matter how many motors you have about the lab, there's always a need for a compact unit, geared down to slow speed and high torque. Draws only 15 watts, has a starting torque of nine-tenths inch lbs., speed from 115 R.P.M. under no load to 85 R.P.M. at full load. Built-in reduction gears; universal clamp for mounting at any angle on an ordinary support rod; 1/8" removable chuck inter-changeable with 1/4" chuck bearing a two-step drive pulley; "on-off" snap switch. Motor and built-in gears fully enclosed. Housing 3 1/2" dia., 2 5/8" deep. Includes 6 ft. rubber cord with plug. $15

CLAY-ADAMS CO., 44 East 23rd St., Inc. New York, N. Y.

Adams MICROTECHNIC SYSTEM

for handling and storing microscope slides during and after preparation

Three units of equipment make up this system...

1. MICROTECHNIC TRAYS for holding microscope slides 50 3 x 1", 35 3 x 1 1/2", 25 3 x 2"
 1 dz. $12.50 dz.
 3 dz. $11.25 dz.
 6 dz. $10.00 dz.

2. MICROTECHNIC CABINET for holding the trays...

3. MICROTECHNIC ROLLING STAND for transporting the cabinet...

Complete unit with 25 trays as illustrated...

ADVANTAGES...

1. Easy and safe handling of slides.
2. Trays will not warp, even in oven.
3. Multiples utility of desk space.
4. Easy identification and access to each slide.
5. Surface of tray resists action to usual laboratory solvents.
6. Tongue and groove arrangement permits any tray to be removed from stack and permits safe stacking.
7. Aids in organization of work.
8. Protects against damage.
9. Accommodates 3 x 2", 3 x 1 1/2", and 3 x 1" slides.

Send for descriptive circular No. 229S
EASTMAN SPECTRUM ANALYSIS PLATES

IN MANY metallurgical operations Eastman Spectrum Analysis Plates have been found useful because of their suitability for extremely rapid processing. This property, coupled with their low background density and high contrast, makes these plates particularly valuable for routine spectrographic analysis of metals.

Data sheets giving the sensitometric characteristics and other properties of Eastman Spectrum Analysis Plates will be forwarded promptly upon request.

EASTMAN KODAK COMPANY
Research Laboratories ROCHESTER, N.Y.

TAYLOR NON-FADING LIQUID
Color Standards
Taylor Slide Comparators, with guaranteed non-fading liquid color standards, are ideal for general pH and chlorine control and for control of phosphates in boiler water.
Molded from plastic, work on the slide principle.
Full information on Comparators and Coleman Glass Electrode.

W. A. TAYLOR & CO., INC.
891 Linden Ave.
Baltimore, Md.

SPRAGUE - DAWLEY, INC.
Pioneers in development of the standard laboratory rat
Madison, Wisconsin
SIMPLIFIED MICRO-PROJECTION APPARATUS

Compact—Light Weight—Brilliant Illumination

The parts of the instrument are housed in a metal case in such a manner that troublesome adjustments are practically excluded. A special condenser ensures a correct beam of light. The source of light is an arc lamp, which is so arranged that each carbon can be adjusted independently. The position of the arc may be examined on a ground glass in the cover of the housing. The carbons are adjusted by two milled knobs which are coaxial and so arranged that they may be simultaneously worked by one hand.

Price with reversing prism, but without microscope, including 100 pairs of carbons, for 110 v.D.C. 5 amps........ $169.00
for 110 v.A.C. 10 amps........ $179.00

A copy of catalog Micro 451/36 will be sent on request

CARL ZEISS, INC.
485 FIFTH AVENUE NEW YORK
728 S. HILL STREET LOS ANGELES