Carbon Dioxide Utilization in Animal Tissues: Dr. E. A. Evans, Jr. .. 25

The Recent Expansion of the Aluminum Industry: T. D. Jolly .. 29

Scientific Events:
Deaths and Memorials; Research at the University of Illinois; Handbook for Physicians on Industrial Health and Medicine in War Industries; Gifts and Bequests to Museums; Scientific Positions under the Government; Appointments and Promotions at the Rockefeller Institute for Medical Research; Award to Dr. Howe of the Medal of the Society of Chemical Industry .. 33

Scientific Notes and News .. 36

Discussion:

Scientific Books:
Clinical Parasitology: Professor Horace W. Stunkard .. 41

Reports:
Metallurgical Research .. 42

Special Articles:
Absorption of Various Alcoholic Beverages: Dr. Henry Newman and Mason Abramson. The Production of a Pressor Substance from Serum Globulin by Action of Pepsin: Dr. C. J. Weber and Others. The Effect of Synthetic Vitamin K on the Rate of Acid Formation in the Mouth: Professor L. S. Forde and Others .. 43

Scientific Apparatus and Laboratory Methods:
A Modified Warburg Reaction Vessel: John N. McConnell and Theodore E. Friedemann. Some New Uses for the 2×2 Projector: Dr. Philip H. Pope .. 45

Science News .. 8

CARBON DIOXIDE UTILIZATION IN ANIMAL TISSUES

By Dr. E. A. Evans, Jr.

DEPARTMENT OF BIOCHEMISTRY, THE UNIVERSITY OF CHICAGO

If we consider living organisms in terms of their nutritional demands upon the environment in which they live, we can place the plant with its ability to synthesize all the complex components of its structure from light energy and simple inorganic substances such as carbon dioxide, water and ammonia at one extreme and the animal with its fastidious demands for preformed dietary constituents such as vitamins, certain amino acids and certain fatty acids at the other. The carbon requirements of the plant can be satisfied completely by carbon dioxide. For animals the sources of carbon are the energy-rich organic molecules of the diet, and carbon dioxide is regarded traditionally as a metabolic end product. Experimentally, this is justified in that one can demonstrate a photosynthetic uptake of carbon dioxide in plants while with animal tissues a continuous metabolic production of carbon dioxide is observed.

The photosynthetic process can be generally formulated:

1. CO₂ + 2H₂A + energy → (CH₂O) + 2A + H₂O
 [HA is any oxidizable substance; A the oxidation product of HA]
