Carbon Dioxide Utilization in Animal Tissues: Dr. E. A. Evans, Jr. 25

The Recent Expansion of the Aluminum Industry: T. D. Jolly 29

Scientific Events:
Deaths and Memorials; Research at the University of Illinois; Handbook for Physicians on Industrial Health and Medicine in War Industries; Gifts and Bequests to Museums; Scientific Positions under the Government; Appointments and Promotions at the Rockefeller Institute for Medical Research; Award to Dr. Hove of the Medäl of the Society of Chemical Industry 33

Scientific Notes and News 36

Discussion:

Scientific Books:
Clinical Parasitology: Professor Horace W. Stunkard 41

REPORTS:
Metallurgical Research 42

Special Articles:
Absorption of Various Alcoholic Beverages: Dr. Henry Newman and Mason Abramson. The Production of a Pressor Substance from Serum Globulin by Action of Pepsin: Dr. C. J. Weber and Others. The Effect of Synthetic Vitamin K on the Rate of Acid Formation in the Mouth: Professor L. S. Fordick and Others 43

Scientific Apparatus and Laboratory Methods:
A Modified Warburg Reaction Vessel: John N. McConnell and Theodore E. Friedemann. Some New Uses for the 2 x 2 Projector: Dr. Philip H. Pope 45

Science News 8

SCIENCE: A Weekly Journal devoted to the Advancement of Science, edited by J. McKeen Cattell and published every Friday by

THE SCIENCE PRESS
Lancaster, Pennsylvania

Annual Subscription, $6.00 Single Copies, 15 Cts.

SCIENCE is the official organ of the American Association for the Advancement of Science. Information regarding membership in the Association may be secured from the office of the permanent secretary in the Smithsonian Institution Building, Washington, D. C.

CARBON DIOXIDE UTILIZATION IN ANIMAL TISSUES1, 2

By Dr. E. A. Evans, Jr.
DEPARTMENT OF BIOCHEMISTRY, THE UNIVERSITY OF CHICAGO

If we consider living organisms in terms of their nutritional demands upon the environment in which they live, we can place the plant with its ability to synthesize all the complex components of its structure from light energy and simple inorganic substances such as carbon dioxide, water and ammonia at one extreme and the animal with its fastidious demands for preformed dietary constituents such as vitamins, certain amino acids and certain fatty acids at the other. The carbon requirements of the plant can be satisfied completely by carbon dioxide. For animals the sources of carbon are the energy-rich organic molecules of the diet, and carbon dioxide is regarded traditionally as a metabolic end product. Experimentally, this is justified in that one can demonstrate a photosynthetic uptake of carbon dioxide in plants, while with animal tissues a continuous metabolic production of carbon dioxide is observed.

The photosynthetic process can be generally formulated:3

\[\text{CO}_2 + 2\text{H}_2\text{A} + \text{energy} \rightarrow (\text{CH}_2\text{O}) + 2\text{A} + \text{H}_2\text{O} \]

[HA is any oxidizable substance; A the oxidation product of HA]

2 Read before the American Chemical Society at Memphis, Tennessee, on April 22, on the occasion of the conferring of the Eli Lilly and Company Award in biological chemistry for 1942.

3 The original work reported in this paper was aided in part by grants from the John and Mary R. Markle Foundation and from the Dr. Wallace C. and Clara A. Abbott Memorial Fund of the University of Chicago.
Science 96 (2480), 25-46.