The Chemist in Three Wars: OTTO EISENSCHIML

Scientific Events:

Deaths and Memorials; Microfilm Records of the Linnean Society of London; Postgraduate Course in Industrial Medicine at the Long Island College of Medicine; The Vaughan Research Awards in Horticulture; The Fiftieth Anniversary of the Department of Zoology of Columbia University

Scientific Notes and News

Discussion:

New Epidemiological Aspect of Spotted Fever in the Gulf Coast of Texas: DR. LUDWIG ANIGSTEIN and DR. MADEO N. BADER. Additional Steroids with Luteoid Activity: PROFESSOR HANS SELYE and DR. GEORGES MASSON. The Occurrence and Significance of Marine Cellulose-destroying Fungi: DR. ELZO BARGHOORN, JR. Too Hot for the Dinosaur!: DR. G. R. WIELAND. The Diffusion of Science: J. L. BENNETT

Quotations:

The Food-producing Power of Great Britain

Scientific Books:

Electricity and Magnetism: PROFESSOR E. H. KENNARD. A Bibliography of Aviation Medicine: DR. EUGENE F. DUBoIS

THE CHEMIST IN THREE WARS

By OTTO EISENSCHIML

PRESIDENT, SCIENTIFIC OIL COMPOUNDING COMPANY, CHICAGO

The Civil War

At the beginning of the Civil War chemistry was in its infancy. The chemical requirements of armies at that time were, of course, proportional to the world's contemporary scientific standards; they comprised in the main the procurement of a few basic materials such as iron, copper and saltpeter; among manufactured products, gunpowder was the most important. Small as these demands appear when compared to those of modern fighting forces, they constituted problems of magnitude for the chemists and industrialists of the time.

The agricultural South, having built its economic structure on cotton, found itself in a precarious position at the outset of the conflict. According to census figures for the year ending June 1, 1860, the United States had produced in twelve months 884,474 tons of pig iron; out of this total the South, represented only by Tennessee and Virginia, had contributed a mere 25,513 tons. The blast furnaces in the South were small and antiquated; a daily output of thirteen tons, reached by newly erected furnaces in Alabama, was considered a decided improvement over the older plants of Virginia and Tennessee. The methods used were obsolete, chemical control unknown. In many cases iron ore and fuel had to be brought from distant places by a dilapidated railroad system or by teams; nevertheless, the Confederacy is said to have produced 50,000 tons annually during the war—a remarkable achievement, especially in view of the

Special Articles:

The Absorption and Distribution of Insulin Labelled with Radioactive Iodine: DR. L. REINER, DR. ALBERT S. KESTON and M. GREEN. Colchicine Induced Unicelents in Diploid Antirrhinum Majus L.: DR. ARNOLD H. SPARROW. Crystallization of a Protein from Poliomyelitis Infected Mouse Brain: DR. E. HACKER

Scientific Apparatus and Laboratory Methods:

On a New Protease from Pileus mexicanus: PROFESSOR MANUEL CASTAÑEDA, F. F. GAVARRON and MARIA R. BALCAZAR. Fungidical Value of the Salicylates: E. E. CLAYTON

Science News