This up-to-date manual is available to technicians and research workers who have direct or indirect supervision of laboratory animals. Written by scientists, it is a technically accurate reference book with 24 pages of helpful information about Breeding, Management, Sanitation, and Feeding. May we mail you one with our compliments?
THE CITRUS FAMILY

The citrus family has had its pedigree revised and brought up to date by a veteran Department of Agriculture botanist, Dr. Walter T. Swingle. Results of his studies, which are expected to be of considerable use to breeders developing new hybrids and to orchardists seeking harder stocks for grafting, will be published soon in monograph form by the University of California Press, as part of a series of major scientific publications in celebration of the seventy-fifth anniversary of the founding of the university. Dr. Swingle’s monograph constitutes the first complete reexamination of the citrus family tree since 1824.

Under the new arrangement, the family consists of 33 genera, only one of which, the genus Citrus itself, is extensively cultivated for its wide variety of edible fruits. However, any one of the 32 other Cinderella sisters in the group might, if managed correctly, assist in producing valuable new hybrids, or offer hardy roots on which present varieties of citrus fruits may be grafted. Furthermore, though these others do not at present produce edible fruits, some of them have good possibilities as ornamentals.

In working out the relationships of the many species in the family, Dr. Swingle made use of a radical new method of study. Ordinarily, a botanist studying pressed herbarium specimens examines the dried flowers whole, usually after picking one off and soaking it in water. This inevitably destroys a piece of the specimen; and often when there is only one specimen to be had, the herbarium curators are reluctant to let it go for this purpose.

Dr. Swingle, using a procedure pioneered in World War I by a noted Swedish botanist at Upsala, embedded single flowers or buds in paraffin and sliced them into transparently thin specimens for examination under the microscope. One specimen was thus multiplied into scores. The method also made possible far more accurate and critical examination of anatomical details than was possible under the older procedure.

Since 1935, when he began his work on the reclassification of the citrus family, Dr. Swingle has accumulated more than a quarter-million such microscope-slide specimens, each keyed to connect it up with the original pressed plant on a herbarium sheet somewhere in one of the world’s great museums or universities. The whole quarter million can, if necessary, be packed in a box of only three cubic feet capacity.

The citrus family has a curious geographic distribution. Its principal area stretches from Indomalaysia southeastward as far as Fiji. There are also a number of genera in Africa; none elsewhere in the Old World, and none at all in the Western Hemisphere.

TUNISIA

As Tunisian rainy season for early 1943 draws to a close, combat activities become possible in the semi-desert areas south and west of the seaport city, Sfax. January is usually the wettest month in this westernmost of French possessions in North Africa. Its rainy season is roughly from October to April. The other months are hot and dry—usually with little or no rainfall.

Southern Tunisia has little rain at any season. It is a desert area. Northern Tunisia is mountainous except for a flat coastal rim. The United Nations’ fighting forces are in the mountainous country, the Axis on the coastal rim. American forces are reported to be in the northern part of middle Tunisia, the area stretching northward from the semi-desert country along the great salt-depression called Chott el Djerid, the largest of the salt-water lakes or chotts of Tunisia.

In the mountainous area are farms, grazing ranches, and timbered areas with growths of marketable evergreen oaks, Aleppo pines and cork trees. The olive groves for which Tunisia is famed are on the coastal rim from Sfax, which is to the north of the Chott el Djerid, northward to Tunis.

Mountainous middle and northern Tunisia is not an easy country for troop movements. It is a land of mountains and plains but without plateaus. It is rough and badly eroded in some sections. It is not supplied with good roads. Getting about in the rainy season is a mud-fighting job. But with new military roads constructed by the Army and with additional flying fields, the path is cleared to drive the enemy on the coastal plains into the Mediterranean.

It is a difficult country in which to obtain food and fighting equipment for an army. Considerable quantities of wheat and barley are produced, some of which are exported normally but not enough to be of much help in feeding the United Nations’ troops. It produces many goats, considerable numbers of sheep, and some cattle. Goat meat is not included in the American army diet, and enough local mutton and beef can not be purchased to meet the needs.

Supplies of all kinds must be transported over a long and difficult road. They are brought by ships to Casablanca, and from there by standard-gauge railroad to western Tunisia. Then they must be reloaded onto narrow-gauge cars or army trucks for transportation to middle Tunisia. They are carried by railroad and highway a distance equal to half the distance from Washington, D. C., to Los Angeles. Some supplies and equipment are unloaded from shipboard at Algiers. Transportation from there is over the same standard-gauge and narrow-gauge railroads.

Shortage of railroads and highways in Tunisia is due to the easy water transportation of the country. It has the Mediterranean on the north and on all of the productive east. It has many good harbors for medium-sized ships and one at Bizerte for the largest ships. But these ports are not yet available for the United Nations.

The small population of Tunisia and the rather simple life of the inland inhabitants have not required the transportation facilities necessary in certain other countries.
Pure Distilled Water

- For Research Work
- Use in Sensitive Solutions
- Or Laboratory Determinations

Stokes Automatic Water Stills produce distilled water of the highest quality. They are simple, rugged, efficient units, with purity of distillate thoroughly safeguarded by triple vapor baffles to eliminate entrainment, automatic "bleeder" device to remove concentrated impurities, large-area boiling chambers, solid block tin condenser tubes, Pyrex glass covers and other features. No. 171 type stills (shown) are available in electrically-heated, also gas- and steam-heated models, from 1/2 to 1 1/2 g.p.h. capacity. Other stock models, up to 100 g.p.h. capacity. See your own laboratory supply dealer for complete information or write direct for new 24-page illustrated catalog.

Typical Analysis of Distillate

<table>
<thead>
<tr>
<th>Total Solids as Parts per 100,000</th>
<th>tm. 0.16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inorganic Solids</td>
<td>0.12</td>
</tr>
<tr>
<td>Nitrogen as</td>
<td>0.0035</td>
</tr>
<tr>
<td>Free Ammonia</td>
<td>0.0000</td>
</tr>
<tr>
<td>Albuminoid Ammonia</td>
<td>0.0000</td>
</tr>
<tr>
<td>Nitrates</td>
<td>0.0000</td>
</tr>
<tr>
<td>Nitrites</td>
<td>0.0000</td>
</tr>
<tr>
<td>Chlorine</td>
<td>0.00</td>
</tr>
<tr>
<td>Bacteria per cc</td>
<td>None</td>
</tr>
</tbody>
</table>

*Certified.

F. J. Stokes Machine Company, 5958 Tabor Road, Olney P. O. Phila. Pa.

C&B Chemical Indicators

C&B Chemical Indicators include all of the common indicators used in analytical and biological work, the hydrogen-ion indicators recommended by Sorenson and Clark & Lubs, and many rare indicators suitable for special work.

These indicators are available in the dry form and in solution, ready to use. Certain indicators are offered in the form of Test Papers—in vials containing 100 strips and in sheets 8" x 10".

Consult the C&B catalog. A copy of the newest edition upon request.

The Coleman & Bell Co.,

Manufacturing Chemists Norwood, Ohio, U.S.A.

Henry Troemner

The Standard of Excellence for 102 years.

Manufacturer of the highest grade Analytical, Assay and Pulp Balances and Weights of Precision.

Catalog 19298

911 Arch Street

where the people are more interdependent upon each other. Approximately three million inhabitants include about 2,400,000 natives, Berbers in the northern part and Arabs in the south. The 110,000 persons of French blood are largely in the north, as are also the 94,000 persons of Italian blood. There are many Negroes and mulattoes, and a so-called Moorish population. This is a mixture of all the races that have successively settled in Tunisia.

DISCOVERY OF RUBBER IN DECAYED BARK

Chance discovery of threads of good rubber in a bit of rotting bark in a Haitian forest may eventually mean restoration to favor of the Castilla rubber tree, once a prime source of the bouncy gum but displaced by Hevea because the latter could be tapped more successfully. That we can develop a method for mining up Castilla bark and getting the bits of rubber out whole, as is now done with the guayule shrub, this disregarded tree may again become a practicable commercial source, is suggested by Dr. O. F. Cook, of the U. S. Department of Agriculture.

Hevea displaced Castilla as a plantation tree because it can be milked every day, whereas the latter tree yields copiously on the first tapping but after that “dries up” and gives no more latex. Harvesting Castilla rubber in the wild, therefore, resolved itself into a very destructive affair. The trees were cut down, the trunk and larger limbs ringed with cuts, and all the latex thus extracted at once. The dead trees were left to lie where they fell. If it proves possible to make an economic extraction of rubber from the bark, after taking the latex by the conventional tapping, the yield of Castilla may be increased to a point of economic justification.

There appears to be an enzyme in Castilla sap, which destroys the rubber if it has a chance to act on it. Dr. Cook suggests that this enzyme could be destroyed by heating, merely by building a light brush fire around the felled trees while they are still green. Then the bark could be stripped and processed whenever convenient.

WINTER FOOD OF GAME BIRDS

Weed seeds are turned into meat by game birds; they form the chief winter food of several species, according to studies by Philip S. Baumgras, of the Michigan Department of Conservation. Mr. Baumgras’s report will be printed in full in the *Journal of Wildlife Management*.

That bane of hayfever sufferers, low ragweed, turns out to have some use after all. It yields the biggest supply of winter feed for the birds, as indicated not only by a study of pheasant crop contents, but by careful hand harvesting and weighing of ragweed seed from a number of typical Midwestern field environments. Wheat stubble fields were an especially rich source, yielding an average of 205 pounds an acre in October. Other weed seed serving as winter food for wildlife species include foxtail grass, lambquarters, black bindweed, smartweed, barnyard grass, finger grass and pigweed.

Wild birds and small game animals are good gleaners of grain left in the field after harvest. In the fields studied by Mr. Baumgras there was an average of nearly seven bushels of corn left unpicked by the mechanical harvester. Most of this was salvaged by livestock; the remainder was used by wildlife. Pheasants especially like corn, though it is not always the best food for them. Squirrels go after it, too, especially when the crop of acorns and beechnuts is short.

Wheat fields cut with a tractor-drawn binder yielded nearly two and a half bushels of waste grain per acre, and oat fields a bushel more than that. This scattered grain was picked up mainly by starlings and blackbirds, but to some extent by pheasants and ducks.

ITEMS

Hope for a raw-egg-white cure of cancer should not soar too high on the basis of New York research reported from Chicago. Future publications are sure to give the negative side of this line of attack. The method is being studied in several scientific institutions which will report their findings as soon as sufficient studies have been made to warrant drawing conclusions. The raw-egg-white treatment is based on the theory that, since a high content of the vitamin chemical, biotin, has been found in cancer tissues, treatment with raw egg white should be beneficial because raw egg white contains an antibiotic chemical, avidin. The raw egg white, according to this theory, would destroy the biotin believed by some to be necessary to the life of the cancer. Biotin, according to previously published reports, favors the development of one kind of liver cancer in rats. Its exact role in human cancer has not yet been determined. Efforts to reduce the amount of biotin in the human body by means of raw egg white are not without danger. A vitamin hunger disease, technically termed biotin deficiency, with symptoms strikingly like those of vitamin hunger diseases due to vitamin lack from poor diet, has been produced in humans by large doses of egg whites.

The U. S. Department of Agriculture, which produced sheer cotton hose when silk grew scarce, is now experimenting with substitutes for sheer cotton. At the experimental hosiery mill at Beltsville, Md., government technicians are trying to make elastic, durable hose from medium-length fibers, now that most of the long-staple cotton is needed for parachute harnesses, airplane cloth and other war fabrics. Most of the cotton mesh or ribbed hose now being sold are made of fine two-ply yarn from long-staple fibers. They are also original government designs or adaptations of them. Present research aims to increase the strength and elasticity of single-ply yarn by means of high twist and chemical finishes. The results may not be so sheer, but they will be practical.

In Crawford County, Ark., where spinach growing is a really big-time industry, some 13,000 acres were planted very early last fall, in hopes of getting an extra cutting early in the season. What happened instead was a terrific epidemic of a fungus disease, downy mildew, which took from a third to a half of the first cutting. According to Dr. Seth Barton Locke, of the Arkansas Agricultural Experiment Station, the too-early planting gave the fungus its chance. The epidemic died down by mid-December, but dead leaves around the bases of the plants were found to be carrying an abundance of spores, ready to start mischief again when the weather warms up.
Add Interest to Laboratory Experiments

with COLOR SLIDES!

For group discussion of microscopic parts of plants, animal life, and other scientific subjects, use S.V.E. full-color 2" x 2" slides. They can be shown by any standard miniature projector in practically any size needed for classroom discussion. Write for new 26-page science catalog now.

SOCIETY FOR VISUAL EDUCATION, INC.
Dept. 2-S, 100 E. Ohio Street, Chicago, Illinois

PHYTOCHEMICALS FOR RESEARCH

DIGITONIN OUABAIN STROPHANTHIN

Complete list of Rarer Alkaloids, Glycosides, and Related Plant Principles on request.

From the Laboratories of

S. B. PENICK & COMPANY
50 Church Street, New York, N. Y.

LaMotte Soil Testing Apparatus

LaMotte service includes a full series of portable outfits for conducting the following accurate tests:
pH (acidity and alkalinity) Magnesium
Available Potash Replaceable Calcium
Available Phosphorus Aluminum
Nitrate Nitrogen Organic Matter
Ammonia Nitrogen Chlorides
Manganese Sulfates
Iron

Prices and information sent on request

LaMotte Chemical Products Co.
Dept. "H" Towson, Baltimore, Md.

WE have a limited supply of

GENUINE JUNG Microtome Knives

for Paraffin and Celloidin
10 cm.-16 cm.-20 cm.-24 cm. also backs and handles.

Prices on request

Gamma Instrument Company, Inc.
95 Madison Avenue
New York, N. Y.

GARCEAU ELECTROENCEPHALOGRAPHS

A.C. Operated
Inkless Writing
Shipped Ready to Run

No Batteries
Require no Shielding
Prompt Delivery

THE JUNIOR GARCEAU ELECTROENCEPHALOGRAPH

A simplified inexpensive instrument for recording electrical potentials of the brain. Built-in interference eliminators permit use anywhere. Inkless records—no photography or film-development required. Instantaneous localization with any 2 of the 10 provided leads.

All Garceau Electroencephalographs operate entirely from the 115 volts, 50 or 60 cycle power lines.

ELECTRO-MEDICAL LABORATORY, INC.
HOLLISTON, MASSACHUSETTS, U. S. A.
With Flying Colors!

In the months that have elapsed since Pearl Harbor, America's fighters and workers have performed miracles. They have accepted grimly and without complaint the hardships and deprivations of modern war. They are demonstrating beyond question that this generation is prepared to fight, to sacrifice, to work, and to endure to protect its liberty and freedom.

Industrial America has been asked to perform prodigious tasks. It has accepted its new responsibilities and obligations without question—and has come through with flying colors. And the colors that fly from the roof tops of war plants—the Stars and Stripes and the awards of achievement—tell the story of men and women who are working as they never have before—workers united in the determination, "We Can! We Will! We Must!"

THE WAR FLAGS OF BAUSCH & LOMB: (1) The Service Flag carries a star for each of 700 employees in the armed services. (2) The Army-Navy "E" flag, awarded to Bausch & Lomb September 6, 1942. (3) The original Navy "E" awarded July 25, 1941; Bausch & Lomb was among the first 14 companies to receive this recognition. (4) The All-Navy "E" burgee, awarded May 18, 1942—the first award with the added star, signifying continued compliance with requirements for over six months. (5) The Treasury Flag, flown only by companies in which 90% of all employees are investing regularly in War Bonds; Bausch & Lomb qualifies with 99% participation.

BAUSCH & LOMB
OPTICAL CO. EST. 1853

AN AMERICAN SCIENTIFIC INSTITUTION PRODUCING OPTICAL GLASS AND INSTRUMENTS FOR MILITARY USE, EDUCATION, RESEARCH, INDUSTRY AND EYESIGHT CORRECTION
FOR MORE THAN FORTY YEARS—

The International Equipment Co. has furnished to Medicine, Public Health and Industry reliable centrifuge equipment adapted to the growing requirements of the Scientist. In this period our centrifuges have been shipped to all parts of the globe and wherever they have gone they have made friends until today the International trade-mark has become the standard for quality centrifuge equipment the world over.

It is a matter of pride to us at International that our centrifuges are contributing substantially to our country's war effort. The Size 1 Type SB model has been adopted as U. S. Army Specification No. 41290 and the Clinical, Type C, Size 2 and BP models have been adopted as standard items by both the U. S. Army and U. S. Navy.

With the demands made upon us by the Army and Navy and direct defense production industries as well as necessary medical and scientific activities, our production facilities are crowded to capacity. We are trying to meet the requirements of all essential users as promptly as possible. If shipment of your equipment is delayed, we ask your indulgence and understanding. Production for Victory must be the first aim of all American industry.

INTERNATIONAL EQUIPMENT CO.
352 Western Avenue Boston, Mass.

Makers of Fine Centrifuges for More than Forty Years

PLATES AND FILMS FOR
Photomicrography and Metallography

KODAK offers a wide range of photographic materials selected for varied uses in photomicrography and metallography. Two materials specially made for these purposes are Wratten “M” Plates Antihalation—with panchromatic sensitivity—and Wratten Metallographic Plates Antihalation—with orthochromatic sensitivity. Both have very high resolving power and will give a wide range of contrast.

Many other plates, and a number of films—including color films—are available for photomicrography and metallography. A written request outlining your specific requirements will bring you full details.

EASTMAN KODAK COMPANY
Research Laboratories Rochester, N. Y.
Microtome joins the search for rubber

To make America independent of Axis-held rubber sources is the hope of scientists and research organizations who are studying many kinds of latex-producing plants.

At the New York State College of Agriculture, at Cornell University, Ithaca, New York, for example, the Indian Hemp, *Apocynum cannabinum*, is one of the many plants which are being subjected to chemical analysis and anatomical study by the Department of Botany.

Spencer Microtomes and Microscopes are aiding in this essential research.

* * *

Optical instruments are so vital to war, production for war and public health that the nation's emergency needs now absorb practically all of Spencer's greatly increased production.

* * *

Spencer

LENS COMPANY
BUFFALO, NEW YORK

SCIENTIFIC INSTRUMENT DIVISION OF
AMERICAN OPTICAL COMPANY