FEBRUARY 26, 1943

SCIENCE—ADVERTISEMENTS

Just out

FUNDAMENTALS OF IMMUNOLOGY
WILLIAM C. BOYD
1943.
382 pages; 45 illustrations.
An introduction to immunology for medical students, chemists, biologists, and others interested in an understanding of the basic principles of the science, written from the viewpoint of a chemist.

$5.50

AUTONOMIC REGULATIONS
Their Significance for Physiology, Psychology and Neuropsychiatry
ERNST GELLHORN
1943.
385 pages; 80 illustrations.
The book will help to coordinate experimental facts of far-flung regions of physiology and medicine under a unified and intelligent point of view.

$5.50

FORTHCOMING PUBLICATIONS

FRONTIERS IN CHEMISTRY
Edited by
R. E. BURK and OLIVER GRUMMITT

Volume I.
The Chemistry of Large Molecules
250 pages, 65 illustrations. About $3.50

Volume II.
Chemical Background for Engine Research
250 pages, 84 illustrations. About $3.50
Spring 1943

Each volume is made up of a series of lectures given by six distinguished scientists at Western Reserve University, Cleveland, Ohio.

MEDICAL ASPECTS OF BONE DISEASES
I. M. SNAPPER
250 pages, 30 plates of original photographic reproductions. $10.75. Spring 1943
The first exhaustive treatment in the English language of an important, but almost completely neglected field of medicine.

Recent Publications

CHEMISTRY & PHYSIOLOGY OF THE VITAMINS
H. R. ROSENBERG
1942. 682 pages, 25 illustrations. $12.00
"The book is excellently documented, and very readable, in spite of the vast amount of material it comprises. It can be most highly recommended to teachers and students as an excellent reference book."

American Journal of Science

VOLUMETRIC ANALYSIS
Volume I. Theoretical Fundamentals
I. M. KOLTHOFF and V. A. STENGER
"This book is a 'must be read' for every chemist and especially those working in the analytical field."

American Leather Chemists Association

NATURAL & SYNTHETIC HIGH POLYMERS
KURT H. MEYER
1942. 708 pages, 180 illustrations. $11.00
"The author has attempted to give a systematic account of the entire field of inorganic and organic high polymers. The result is an exciting and important volume, to which the term 'magnum opus' may be applied with but slight reservation."

Bulletin of Institute of Paper Chemistry
THORIUM

Discovery of the rare radioactive element thorium in the sun is announced by Dr. Charlotte E. Moore, of the Princeton University Observatory, and Dr. Arthur S. King, of the spectroscopic laboratory at Mt. Wilson. The element was found to occur in the ionized state only.

Although search for thorium started in 1938, the investigation was hindered by lack of suitable experimental work on the spectrum of the element in the laboratory under different conditions of temperature and magnetic field strength. When such experimental work recently became available the search was begun anew and this time was successful.

The basis for the discovery was chiefly the detection of lines in the solar spectrum that matched the lines of thorium most easily produced in the laboratory and which are generally the strongest lines of an element. These are known as its ultimate lines and if they are absent it is hopeless to look for any others.

One line of thorium which stood out in strength above all others and was therefore believed to be its ultimate line coincided almost exactly with a faint unidentified line in the solar spectrum. Other strong lines of the ionized element could only be tentatively identified with solar lines. But as the very strongest line of thorium is represented so weakly in the sun the absence of the other lines is not considered surprising.

Two of the strongest lines of neutral thorium coincided with solar lines, but the agreement was believed to be accidental from another line of evidence. Since sunspots are about 1,500 degrees Centigrade cooler than the surface of the sun surrounding them, they should contain less ionized thorium and consequently more of the neutral atoms. Hence, if the lines really belonged to thorium, they should be strengthened in the spectrum of sunspots. But since the lines were not strengthened in the sunspot spectrum the investigators were forced to reject the coincidences as accidental.

SCIENCE, SOCIAL SCIENCE AND THE HUMANITIES

The physical sciences, necessarily given priority in present-day training programs to meet the war emergency, will not dominate post-war education, Dr. James B. Conant, president of Harvard University, emphasized in an address before the New York Academy of Public Education. They will maintain the gains they are making, but the social sciences and humanities will have to catch up with them, to maintain a balanced and a livable world.

The old notion that there is a basic opposition between two kinds of training, and that one kind is parasitic on the other, was decried by the speaker. The real relation, he said, is not one of parasitism but of symbiosis—the kind of thing you have in a lichen, in which two quite different types of organism are mutually beneficial to each other.

Such a symbiosis has long obtained in human affairs, Dr. Conant continued. Historically, the system of political liberalism under which we live has made scientific advance possible; and in turn scientific advances have fed our sense of freedom. “If we are to have a free society on this continent we must continue to have advances in the fundamental sciences, and these advances in turn can take place only if man is free. The symbiosis must continue if this nation is to prosper... Let no man who admires science or extols new industrial techniques look with favor on any abridgment of human liberty unless he wishes to encourage forces which will eventually destroy those things he values most.” He emphasized the necessity for post-war planning, if only to avoid further wars: “We can not maintain a free society in a world in which we must face the terrible and disrupting burdens of modern war once every generation.”

In concluding, he offered a five-point outline of a master plan for future research: (1) Provide an educational system which offers real equality of opportunity. (2) Find the exceptional men among those given this opportunity while they are still in training. (3) Give these men every advantage and facility in the way of machines and helping hands. (4) Be certain that there are many rival and independent groups competing for scientific and technical achievement, and that no group can long perpetuate itself. And finally, (5) Beware in times of peace of coordinating agencies with dictatorial powers—of ideas of a peace-time scientific general staff.

THE ACCURACY OF MEASUREMENT

The 52,000-ton full-load displacement of the new “Iowa” class battleships may actually be as much as 52,052 tons or only 51,948 tons without any one knowing the difference. That a battleship can not be weighed with an accuracy closer than one part in a thousand, was pointed out by Dr. Harvey L. Curtis, of the National Bureau of Standards, in his address as retiring president of the Washington Academy of Sciences. By contrast, a kilogram weight (basic unit of the metric system, a little more than two English pounds) can be compared with another with an accuracy a little less than one part in a billion.

Biggest things and smallest things are most difficult to measure and weigh. A battleship is about the biggest lump of matter which human means can weigh directly. In the opposite direction, the antipneumococcus germ or virus particle is among the smallest of living things. It would require one octillion of these to weigh as much as a blue whale, largest of all animals. Far below this tiniest of germs, however, is the electron, smallest of all known objects. Its mass has been determined within an error of one per cent—but this is an accuracy of only one part in a hundred, as compared with one in a billion when kilogram weights are being compared.

As with weights, so with lengths. The standard meter
ZEISS MAGNIFIERS

BINOCULAR HEADBAND MAGNIFIER 2.25x

Large and Clear Field of View
Free Working Distance of from 8 to 10 Inches
Suitable for Spectacle Wearers as well as Normal Sighted Persons and for any Interocular Distance
Gives Protection against Stray Light

$12.00

APLANATIC FOLDING MAGNIFIERS
Made in U. S. A.

These folding magnifiers, in dust-tight Bakelite mounts, have become popular pocket lenses for many purposes. They are available in two types:

6-power Folding Magnifier consisting of an aplanatic lens-system of wide field, high luminosity and excellent definition.

9-power Folding Magnifier which has in one bakelite housing the aforementioned 6-power aplanat and a 3-power lens. Both may be used singly as 6-power or 3-power magnifiers respectively, or in combination resulting in a magnification of 9 times.

6-power $9.00 Combination 3- and 6-power $12.00

Leaflet Med 258–542 on request

WE BUY, REPAIR, RECONDITION, RESELL USED ZEISS INSTRUMENTS

CARL ZEISS INC.
485 Fifth Avenue, New York
728 So. Hill Street, Los Angeles
bar (the laboratory's "yardstick") can be compared with another meter bar with an accuracy of one part in ten million, perhaps under very favorable conditions to one part in fifty million. The error amounts to something between a twentieth and a hundredth of the diameter of a fine spiderweb.

Accuracy of comparisons falls off with either increase or decrease in lengths being compared. The standard base line used in the most accurate kind of surveying is usually 1,000 meters. Its accuracy, however, can be determined only to one part in a million, as compared with one in ten million for the single meter.

The millimeter (a thousandth of a meter) can be determined with an accuracy of only one part in a few hundred thousand. The distance between the nuclei of a hydrogen molecule is known only to one part in a thousand, while the diameter of a proton, the smallest known object, has not yet been determined within an error of less than one part in ten.

ALASKA HIGHWAY CONSTRUCTION

OLD-TIMERS in Alaska and the mountain country of western Canada declared that a road couldn't be built where the Army Engineer Corps planned to put it, but airplane reconnaissance found a way through, and "guts and tractors" built the road.

This, in a one-sentence summary, tells the story of the building of the Alcan Highway, which was presented at greater length before a joint meeting of the American Philosophical Society and the Geographical Society of Philadelphia on February 18 by Major Roswell P. Rosen- gren, chief of the Office of Technical Information.

The story of the road is a saga of decision, speed and determination. Only a little more than a year ago, on February 2, 1942, Brig. Gen. C. L. Sturdevant, of the Engineers, was told that a road was to be built and instructed to bring in preliminary plans. Forty-eight hours later he submitted them. He received from the Army High Command a directive on February 14 to proceed with the project.

The Canadian Government immediately gave informal permission for survey parties to go to work in their territory, and this was made formal on February 26. By March 10, American troops were arriving at the railhead at Dawson Creek, B. C., in temperature around 40 degrees below zero Fahrenheit. Further contingents reached other construction centers during April.

The route selected was criticized by local men who thought they knew the country because a considerable part of it apparently would have to traverse a 6,000 foot plateau. Actually, the airplane parties found a route no part of which had to climb above a 4,000 foot altitude. All of it lies in timbered country.

Several engineer regiments (one of them colored) tackled the job which looked like one to daunt Hercules. Each regiment moved up "heavy artillery" in the form of 44 big tractor-bulldozers, with scores of trucks, power shovels, piledrivers and other machinery; and of course the omnipresent, indispensable jeeps. The country fought the invaders with miles and miles of sullen muck and millions of mosquitoes. The road, as one writer put it, "was built as in battle, with every hardship except bullets." And the Corps of Engineers, U. S. Army, won their fight.

ITEMS

That the first sunspot of the new cycle may have already appeared, nearly a year before the end of the present cycle, it has been announced by Dr. Seth B. Nicholson, of the Mt. Wilson Observatory. The spot-group was visible for one day only on December 20, 1942, in the relatively high latitude of 32 degrees north, on the sun's surface. One of the most fundamental characteristics of the solar cycle is that toward the end spots are confined to a belt about 10 degrees wide on either side of the sun's equator. But when spots of the new cycle appear they are much farther from the equator than the old, usually above latitude 25 degrees, as was the case of the short-lived group of December 20. As a rule, the cycle to which a spot-group belongs can be decided definitely from its magnetic polarity as shown by the preceding and following members as they move across the sun's disk, the magnetic polarity of spot-groups of one cycle being opposite to those of the next. But in this particular case, the preceding spot was so little in advance of the other that it was hard to say whether the group should be classified as having a polarity the same as other spots of this cycle or not.

About three fourths of the moon was blacked out by the shadow of the earth on Friday night, February 19— the last lunar eclipse that will be visible in the United States until 1945. A nick appeared in the lower left edge of the moon three minutes after midnight. By 1:38 A.M. Saturday it was nearly immersed in shadow. A dull, coppery glow covered the eclipsed portion because some light is bent into the shadow as the rays pass through the earth's atmosphere. Since blue waves of light are scattered by passage through the air, giving the sky its blue color, light which reaches the moon has a preponderance of red waves, causing the copperish hue. The eclipse was observed until 3:13 A.M.

That cold wave we've just been through wasn't a local affair. It covered pretty much the entire coast east of the Rockies, according to the U. S. Weather Bureau. And it was the coldest weather we've had this winter. Temperatures ran as much as 12 degrees below normal, as contrasted with 10 or 15 degrees above normal during the previous week. Drops to 20 and 25 degrees below zero Fahrenheit were common in the north central states, and even as far down the map as central Georgia there were freezes at 10 or 15 degrees above zero. A good deal of harm may have been done to growing vegetable crops and dormant fruit buds in the South, but the extent of the damage has not yet been determined. Stock in the Northwest suffered from cold and deep snow, and there seems to have been some killing of uncovered winter grains, especially in the southern Plains region. And through it all, the Far West basked in temperatures well above normal for the season.
NEW SPENCER MICROSCOPE MODEL 66B
IMMEDIATE DELIVERY

TRADE OLD MICROSCOPES

Any number of old microscopes will be accepted by us on these
BRAND NEW SPENCER MICROSCOPES.

Usually only one old instrument can be traded for each new one but our policy of accepting more than one now also applies on our stock of these No. 66B Spencer models.

We will also accept old micro-tomes, old micro-lenses or bare stands. We are especially in need of oil immersion microscopes and lenses.

As new microscopes are no longer being made for civilian use, we appeal to everyone to sell or trade their old or surplus instruments.

DO NOT WAIT TRADE OR SELL NOW!

THE GRAF-APSCO CO.

5868 BROADWAY

CHICAGO, ILL.

PRICE $72.80
Without cabinet or objective boxes
10% DISCOUNT ON FIVE OR MORE

Equipped with:
10X ocular
16 mm. objective
4 mm. objective
Double dustproof nosepiece
Disc diaphragm
Concave mirror
Full range fine adjustment

The War Production Board gives Schools authority to purchase these microscopes under Limitation Order L-144.

IMMEDIATE DELIVERY— Order now while these new microscopes are still available. No more will be manufactured for the duration.

APECO Saves Man Hours

APECO DOES THE WORK OF 3 PEOPLE IN MY DEPARTMENT

Any boy or girl can do all your copying work—better, faster, privately—releasing Draftsmen, Clerks, Typists AND THEIR EQUIPMENT for other work.

APECO PHOTO COPIES are identical copies—clear, sharp, durable—legally accepted. No proofreading! No errors! With APeCO you can make Photo-tracings direct from drawings, blueprints or old tracings.

APECO makes copies any size up to 18 x 22" 1st copy in 3 minutes, 120 copies an hour—right in your own place—anytime, day or night. 'No skill or darkroom needed!' Foolproof! Nothing to get out of order.

IMMEDIATE DELIVERY on machines and supplies.

Learn how others in your field have SAVED MAN–HOURS while speeding production. Write for time-savings facts.

AMERICAN PHOTOCOPY EQUIPMENT CO.
2849 N. Clark St., Dept. AV-2, Chicago, Ill.
REPRESENTATIVES IN ALL PRINCIPAL CITIES AND CANADA
Biological Stains

COLEMAN & BELL were pioneers in the manufacture of Dependable Biological Stains.

C&B Stains are recognized for their high standard of quality, purity and dependability.

Most of the commonly used Stains have been tested and passed by the Commission on Standardization of Biological Stains.

Would you like to have a copy of our new 1943 catalog for ready reference?

THE COLEMAN & BELL CO.
Manufacturing Chemists Norwood, Ohio, U.S.A.

OUR LEADING PRODUCTS—

Giemsa Stain
(Gradwohl)
Commission-Certified
$2.00 for 2 ounces

Blood Grouping Sera

A and B—Price $2.00 per 2 c.c.

Absorbed B—
(to differentiate A1 from A2)
Price $3.00 per 1 c.c.

M and N
(in Paternity and Medico-legal cases)
Price $5.00 per c.c.

OF HIGH TITER AND EFFICIENCY

GRADWOHL LABORATORIES
St. Louis, Missouri
3614 Lucas Avenue
Write for Price List of all Laboratory Products

SPRAGUE - DAWLEY, INC.
Pioneers in development of the standard laboratory rat

Madison, Wisconsin

PHYTOCHEMICALS FOR RESEARCH

DIGITONIN
OUABAIN
STROPHANTHIN
Complete list of Rarer Alkaloids, Glycosides, and Related Plant Principles on request.

From the Laboratories of

S. B. PENICK & COMPANY
50 Church Street, New York, N. Y.

And Now—a Special Field Model

LaMOTTE FALLING DROP DENSIMETER
for determining Specific Gravity of Body Fluids and Blood Proteins

As an important adjunct in treating cases of shock, this model was designed for portability, and constructed to withstand transportation and field use. It has been tested in the field and is now in service in foreign war zones.

Employs a modification of the Falling Drop technique of Drs. H. C. Barbour and W. F. Hamilton which is approved by the authors.

LaMotte Chemical Products Co.
Dept. H Towson, Baltimore, Md.
DETERMINATION OF MAGNESIUM

REAGENT—Titan Yellow

METHOD—Spectrophotometric

Magnesium hydroxide, when precipitated in the presence of titan yellow, forms a lake which is suitable for spectrophotometric measurement. Determination of magnesium by this means is rapid, requiring about twenty minutes, and compares favorably in accuracy with the official gravimetric procedure. It is less subject to uncertainties than the standard volumetric methods, and for most practical purposes the interferences likely to be encountered do not affect the results. The reagent is available as Eastman P 4454 Titan Yellow (Pract.).

Write for an abstract of the article in which the determination of magnesium with titan yellow is described. . . . Eastman Kodak Company, Chemical Sales Division, Rochester, N. Y.

An inexpensive Spectrometer ideal for instruction in its uses and applications

This instrument has all the essential adjustments of larger more expensive models and can be used for all the standard experiments. The 125mm circle reads to 1 minute by vernier. Collimator and telescope have 20mm apertures. An adjustable 8mm slit is provided. The telescope is supplied with the high power Gauss eyepiece, rack and pinion focussing, and a tangent screw for delicate adjustment. Send for Bulletin 144-04

THE GAERTNER SCIENTIFIC CORPORATION
1204 Wrightwood Avenue Chicago, U. S. A.
To Man the Convoys

Merchant ships—of critical importance in the logistics of war—must be competently manned to supply the far-flung war fronts of the United Nations with adequate tonnages of food, guns, tanks, planes and fuel. More than 1200 major ships and 50,000 men of the U. S. Merchant Marine are carrying on a task which has contributed mightily to the successes we are now achieving.

Each week, each month, sees more ships sliding down the ways. More men—thousands of them—must be recruited and trained . . . quickly.

The visual methods pioneered in the schools and colleges of the country are playing an important part in expediting this training.

* * *

Spencer Lens Company
BUFFALO, NEW YORK
Scientific Instrument Division of
American Optical Company