FLIGHT PREPARATION TRAINING SERIES

Published under the Supervision of the Training Division,
Bureau of Aeronautics, U. S. Navy

Mathematics for Pilots
157 pages, 4½ x 7½, illustrated. 75¢
Covers the algebra, geometry, and trigonometry that every pilot must know. A feature of the book is the large number of problems taken from navigation and principles of flying. A review of arithmetic is included to insure quick and automatic use of fundamental operations. The need for speed and accuracy is stressed throughout.

Physics Manual for Pilots
229 pages, 4½ x 7½, illustrated. 90¢
Gives a condensed treatment of most of the topics included in a standard high school physics text. All fundamental principles needed by the pilot are discussed. Units requiring the smallest amount of mathematics are given first so that a student taking a mathematics refresher course at the same time can use the mathematics review in his physics class.

Principles of Flying
338 pages, 4½ x 7½, illustrated. $1.50
Aims to acquaint the student with the basic principles involved in flying, including the rudiments of airplane construction. The book presupposes knowledge of only the most elementary mathematics and physics, and is written, as far as possible, in nontechnical language.

The Effects of Flight.
Mental and Physical Aspects
120 pages, 4½ x 7½, illustrated. 60¢
Explains the causes of the many physical sensations which the aviation cadet encounters for the first time in his flight training. Psychological reactions, which have been responsible for many ‘‘washed-outs,’’ are dealt with, and the fear of the check pilot and the cure for this are discussed in some detail.

Operation of Aircraft Engines
206 pages, 4½ x 7½, illustrated. 90¢
Explains the operation of the internal-combustion engine, pointing out the refinements which make it possible to adapt it for use in airplanes, where decreased weight and increased horsepower are essential. The book teaches the student how to recognize the first signs of engine trouble and tells him what to do about it.

Aerology for Pilots
107 pages, 8½ x 11, illustrated. $1.25
What the pilot should know about aerology. Emphasis is placed upon understanding of weather reports (forecasts, weather maps, and sequence reports) and the personal weather observations necessary to find favorable flying conditions and avoid or conquer weather hazards.

AIR NAVIGATION

Part I. Introduction to Earth
79 pages, 8½ x 11, illustrated. $1.00
Designed to orient naval aviation cadets to navigation that may encircle the earth. The book gives an over-all view of the earth as a sphere, of place relationships of war zones, of general and climatic considerations underlying strategy, and something of the strategic significance of military objectives.

Part II. Introduction to Navigation
81 pages, 8½ x 11, illustrated. $1.00
Covers the basic fundamentals of navigation technique. There is a detailed explanation of the various types of map projections, an understanding of which is essential for plotting courses. Emphasis has been placed upon the importance of thorough knowledge and accuracy.

Part III. Dead Reckoning and Lines of Position
60 pages, 8½ x 11, illustrated. $1.00
Introduces some basic applications of the fundamentals covered in the first two volumes. It explains how the aerial navigator records the progress of his plane over the surface of the earth, and describes certain methods used to check the estimated position of the plane during flight, and the manner by which the effects of air currents on the movement of a plane can be determined.

Send for copies on approval

McGRAW-HILL BOOK COMPANY, INC.
330 West 42nd Street, New York, N. Y. Aldwych House, London, W.C.2
THOMAS JEFFERSON

Conjure up in your mind’s eye five images of Thomas Jefferson, whose birth on April 13, 1743, two hundred years ago, is being celebrated this year. Stand them side by side. In the center is Jefferson the lawyer, statesman and public servant. To the right is Jefferson the musician, violinist and singer, and Jefferson, the horseman and lover of outdoor sports. To the left stands the scientist and inventor, and also the landowner and farmer.

These five Jeффersons together constitute the man whom history records as one of the most versatile persons in America’s early days. His music and his horsemanship were his recreation. His inventions were his hobby. His “tranquil pursuit of science” was, to use his own words, his “supreme delight.” He inherited nearly 2,000 acres of land and added another 3,000 by purchase. His father-in-law left him a 5,000-acre plantation to manage as an additional farming activity.

As a scientist Jefferson was interested in many branches: geography, geology, botany, zoology, medicine, agriculture, chemistry and the natural sciences. The practical side of all these appealed to him. He once wrote, “I have wished to see chemistry applied to domestic objects, to malting, brewing, making cider, bread, butter, cheese, soap, and the incubation of eggs.”

Although the subject had not yet been named, Jefferson was a great early paleontologist. The fossil remains and the bones of prehistoric animals delighted him. He secured a number of the bones of an animal about the size of a bull moose found in a cave in Virginia. Because they included a large claw he called the animal the “big-claw” or Megalonyx. The bones were sent to Philadelphia and the animal “reconstructed.” They are still there with the Academy of Natural Sciences. The animal was a giant ground sloth, extinct for some 30,000 years.

Jefferson collected many prehistoric bones through friends in Ohio, Kentucky and elsewhere. His great interest in paleontology was awakened by his contacts in Paris with leading scientists; in the days when Jefferson represented the United States Government there, Paris was the center of the sciences, particularly botany and zoology.

Thomas Jefferson, while president and at other times, seems to have had a keen sense of the important part science would play in the future of the American nation. His foresight is responsible for much of the scientific work done by the Government then and later. He is credited with being the originator of the patent system. The idea of a National Bureau of Standards is in a report by him to Congress in 1790. The report suggests plans for establishing uniformity in the coinage and weights and measures of the United States.

In 1806 President Jefferson recommended a coast survey, on which the Congress took favorable action in February 1807. The continuation of this survey work is carried on by the Coast and Geodetic Survey. Other recommendations had much to do with the establishment later of the Naval Observatory, the Hydrographic Office and the Weather Bureau.

Further evidence of Jefferson’s great interest in the sciences is shown by two exploratory trips which he made possible. He sent Colonel Zebulon Pike to explore the peak that now bears Pike’s name. He asked the Congress to authorize the expedition of Lewis and Clark. He paid from personal funds $2,500 to help finance the trip. The report of these two men, made from their notes written daily while traveling up the Missouri River and crossing to the Pacific, is filled with scientific observations resulting from instructions received by them from the President.

Jefferson as an inventor never took out a patent. In a large measure he is responsible for the creation of the U. S. Patent law and he was the first administrator of the law. Under it patents were issued by a board composed of the Secretary of State, the Secretary of War and the Attorney General. He was Secretary of State and chairman of the board. The work in connection with patenting was carried out in the State Department and the books and records kept there. Jefferson and his contemporary inventor, Benjamin Franklin, both decided to contribute their inventive genius to their country and to their fellowmen as they contributed their abilities in affairs of state.

Scientific principles were the basis of many of Jefferson’s inventions. The moulding board of a common plow may not seem to be scientific, but it is. Jefferson sought a proper shape to turn the soil with the least effort, to break the soil properly, aerate it, and to cover the turned-in vegetation to add humus to the land. It was certainly regarded as a scientific achievement by several French scientific societies which awarded him honors for his invention.

His pedometer sounds more scientific. With it a distance could be measured roughly by walking it. A recording instrument was carried in the watch pocket. A tape led from the instrument through a hole in the bottom of the pocket, down “between the breeches and drawers” to a knee band. This recorded every step taken, by one leg at least.

Jefferson’s “whirligig” chair may not be a scientific device, but it was an important invention. It is the great-grandfather of all the swivel chairs for which Washington is famous and without which perhaps modern governments could not exist. A combination walking-stick and outdoor seat did not prove as prolific. His hemp machine for breaking and beating hemp into fiber is one of his greatest inventions.

Architecture is a science. Jefferson’s great work as an architect was the designing of the original buildings of the University of Virginia, still standing and in use. It is his greatest memorial. Monticello, his home, is also his work. American people are familiar with its outline, as it is now on one face of the new Jefferson five-cent piece.

SEARCH FOR AN ANTIMALARIA CHEMICAL

A great push to find a chemical remedy for malaria “which will not have the deficiencies of quinine, plasmodin and atabrine” is going forward, was reported by Colonel Paul F. Russell, of the Medical Department of
Because they satisfy the most exacting requirements, 'Roche' vitamins are the choice of many scientists engaged in research.

The dependable purity and unexcelled standard of quality of 'Roche' vitamins are backed by years of experience in vitamin research and manufacture.

THIAMINE HYDROCHLORIDE
RIBOFLAVIN
NICOTINIC ACID
NICOTINIC ACID AMIDE
PYRIDOXINE HYDROCHLORIDE
CALCIUM PANTOTHENATE
ASCORBIC ACID
α-TOCOPHEROL ACETATE

'ROCHE'
HOFFMANN-LA ROCHE, INC.
Vitamin Division

ROCHE PARK, NUTLEY, N. J.
Quartz crystals are used in microphones, and as electric filters and oscillators. The so-called piezoelectric quartz crystal vibrates as an electric charge on its surface oscillates. The constancy of the rate of vibration is remarkable. It is more constant than the pendulum on a high-grade astronomical clock. A crystal of good quality kept at a constant temperature will not vary two seconds in ten days. It is this reliability that makes it essential as an electric oscillator.

ITEMS

Food crops for production in 1943 are more important at the present moment than guayule plantings for rubber in 1945. Since the recommendations of the Baruch committee were issued urging a greatly increased guayule raising program, the situation has changed. "The need for the maximum food production has become more pressing, and the outlook for synthetic rubber has become somewhat clearer," is emphasized by Secretary of Agriculture Wickard and Rubber Director Jeffers. Both feel that it is not desirable to use any large quantity of land for planting the rubber plant this year as the first rubber yield would not be until two years from now. Not only is the land needed for food crops but the manpower is needed also. The Department of Agriculture is planning to have plenty of guayule planting stock available in the nurseries in case a further survey shows by mid-summer that emphasis should shift again to rubber production.

"**THERMOPLASTICS,** like their thermosetting cousins, perform many necessary functions in electrical equipment, and the technical apparatus of the electronic world of the future will be served both by the material with which we are familiar, and by newer and better ones," according to H. K. Nason of the Monsanto Chemical Company who spoke at the Pittsfield, Mass., meeting of the American Institute of Electrical Engineers. These plastics are now serving many useful purposes in electronics, he continued, but much work is being done in industrial and other laboratories to develop a thermoplastic that will meet the full needs in the electronics field. This requires material which can be used in situations where high temperatures are encountered, and plastics that will not "creep," better known as cold-flow. The progress being made will not be reported upon until after the war.

**VICTORY gardeners who have heavy clay soil to contend with may be able to improve its texture by the addition of sifted anthracite coal ashes and at the same time dispose of the ashes. Coal ash, it is pointed out, improves only the physical state of the soil; it is not a fertilizer. And only anthracite ashes are safe to use. Clay soils are sticky when wet, and hard when dry. Coal ashes will decrease the stickiness and help prevent the hardness. The amount to use depends upon the soil, but ordinarily two inches of ashes plowed or spaded into six inches of the topsoil is sufficient. The ashes and soil should be well mixed. Vegetables, flowers and grasses will grow better in soil so treated and the labor of taking care of the garden is lessened. Sandy soils are also improved by anthracite ashes. Their moisture retention properties are increased. In this the ashes have an effect similar to that of human.
TECHNICON AUTOMATIC PIPETTE WASHER

PATENT PENDING

Prevents breakage of pipettes
Automatically washes pipettes without removing from carrier
Carrier made of stainless steel to resist corrosion
Used in most Board of Health laboratories

THE TECHNICON CO.
NEW YORK - - - N. Y.
He's Making a Photomicrographic History of the War

The photomicrographer in his laboratory, whether in an industrial plant, in some distant United Nations base of operations or in a great research institution...whether his work is dedicated to war production or to the fight against disease...is today documenting each forward step that science takes.

Vital in war production and an essential heritage to those who will live in the days of peace to come, photomicrography preserves important findings that could otherwise so easily be lost. Photomicrography makes wartime experience in metallurgy, surgery, prophylaxis, chemistry...in all fields...available for peacetime applications.

Here is another field in which Bausch & Lomb instruments, developed in the interests of peacetime scientific and industrial research, go to war. Here is still further proof that this is a war of precision, where the optical instruments that insure accuracy in expanded production take an important place beside those other B&L Instruments used as fighting tools by our fighting men.

For Bausch & Lomb Instruments essential to Victory—priorities govern delivery schedules.

BAUSCH & LOMB
OPTICAL CO. • ROCHESTER, NEW YORK
ESTABLISHED 1853

AN AMERICAN SCIENTIFIC INSTITUTION PRODUCING OPTICAL GLASS AND INSTRUMENTS. FOR MILITARY USE, EDUCATION, RESEARCH, INDUSTRY AND EYESIGHT CORRECTION
Biological Stains

In the manufacture and development of Biological Stains COLEMAN & BELL are American pioneers.

For 22 years C&B Stains have been acclaimed for their high standard of quality, unvarying purity and dependability.

The Commission on Standardization of Biological Stains have tested and passed most of the commonly used Stains.

Our new 1943 catalog is now available. A copy can be had for the asking.

THE COLEMAN & BELL CO.
Manufacturing Chemists
Norwood, Ohio, U.S.A.

LaMotte Chlorine Test Papers

As an aid in the rapid estimation of the concentration of chlorine sterilizing solutions, in water, etc., we have prepared test papers showing definite color changes for chlorine values 50, 100, and 200 p.p.m. They are supplied in vials containing 100 strips of the paper and color chart for the concentrations mentioned above. Price $1.00 per vial, f.o.b. Towson, Baltimore, Md.

LaMotte Chemical Products Co.
Dept. "H" Towson, Baltimore, Md.

Professor of Mathematics desired by New England college, to assume duties July 1st, 1943. Address Box OBR, SCIENCE, Lancaster, Pennsylvania.
The Army and Navy medical staffs are setting new standards of public health in their drive to improve the physical condition of America's fighting men. The men who will swing the balance of power to victory for the United Nations must be physically fit.

American medical colleges have taught and inspired the doctors who supervise the medical work. American industries have produced excellent laboratory equipment. Thousands of Spencer Microscopes and "Bright-line" Haemacytometers have been supplied to the Services. Microtomes and other instruments, in proportion, have been delivered.

Our men in the Armed Forces will receive the most advanced medical attention possible while in training here or while operating from bases throughout the world.

Spencer LENS COMPANY
BUFFALO, NEW YORK
SCIENTIFIC INSTRUMENT DIVISION OF
AMERICAN OPTICAL COMPANY