NEW TEXTS FOR WARTIME COURSES
IN NAVIGATION

Navigation and Nautical Astronomy
By Lyman M. Kelis, Willis F. Kern and James R. Bland, United States Naval Academy. In press—ready in June

Three authors nationally known for their outstanding publications in trigonometry have produced a text in navigation and nautical astronomy characterized by exceptional clarity and simplicity. The mathematical background included makes it easy for the student to understand the essential topics of navigation, which are arranged in logical order, lucidly explained, profusely illustrated, and presented with numerous simple exercises and problems actually arising in practice.

Piloting and Maneuvering of Ships
By Lyman M. Kelis, Willis F. Kern and James R. Bland. 200 pages, 6 x 9. Textbook edition, $2.00

Represents the first four chapters of Navigation and Nautical Astronomy, published as a separate volume. It explains, simply yet accurately, the fundamental principles of piloting, and applies elementary vector theory to the relative movement of ships, torpedoes, and airplanes. Two chapters give the mathematical background, the important definitions, and a brief treatment of instruments.

Radio Navigation for Pilots
By Colin H. McIntosh, American Airlines, Inc. 175 pages, 6½ x 8. Textbook edition, $2.00

Radio navigation is here presented from an aircraft point of view and is strictly limited to the practical treatment demanded by pilots. Approximately half of the book is devoted to radio range navigation and necessary flight techniques, and the other half to radio-direction finding as a navigational aid.

The latest methods and equipment used in air navigation by piloting, dead reckoning, radio position finding, and celestial navigation, are clearly and thoroughly explained in the new revised edition of this well known, widely used text. The author, out of his extensive specialization in this field, has made the treatment complete and authoritative, yet so simple and direct that the beginning student will have little trouble in understanding and applying the methods described.

By Bert A. Shields, Lieut. Comdr., U.S.N.R. 288 pages, 6 x 9. $2.25

A revision and expansion of Parts III and IV of the author’s well known Air Pilot Training. A chapter on navigation problems has been added to assist the student in solving several types of problems that have recently been given considerable prominence on the pilot’s written examinations. The various steps in solving off-course problems are carefully explained and a number of typical problems are solved, including the radius of action type of problem.

Air Navigation
The following seven volumes, under the general title of Air Navigation, are included in the Flight Preparation Training Series, Published under the Supervision of the Training Division, Bureau of Aeronautics, U. S. Navy.

Part I. Introduction to Earth
79 pages, 8½ x 11. $1.00

Designed to orient naval aviation cadets to navigation that may encircle the earth. The book gives an over-all view of the earth as a sphere, of place relationships of war zones, of general and climatic considerations underlying strategy, and something of the strategic significance of military objectives.

Part II. Introduction to Navigation
81 pages, 8½ x 11. $1.00

Covers the basic fundamentals of navigation technique. There is a detailed explanation of the various types of map projections, an understanding of which is essential for plotting courses. Emphasis has been placed upon the importance of thorough knowledge and accuracy.

Part III. Dead Reckoning and Lines of Position
60 pages, 8½ x 11. $1.00

Introduces some basic applications of the fundamentals covered in the first two volumes. It explains how the aerial navigator records the progress of his plane over the surface of the earth, and describes certain methods used to check the estimated position of the plane during flight, and the manner by which the effects of air currents on the movement of a plane can be determined.

In Preparation
Part IV. Navigation Instruments
Part V. Relative Movement
Part VI. Contact Flying
Part VII. Nautical Astronomy and Celestial Navigation

Send for copies on approval

McGRAW-HILL BOOK COMPANY, Inc.
330 West 42nd Street, New York, N. Y. Aldwych House, London, W.C. 2
THOMAS JEFFERSON

Thomas Jefferson’s two hundredth anniversary was given special observance at the annual spring meeting of the American Philosophical Society. For 1943 marks also a bicentennial milestone in the history of the society. It was in 1743, the year of Jefferson’s birth, that the little informal club called ’Junto,’ which Benjamin Franklin had got together to discuss scientific and other scholarly matters, was formally organized under the full title which it still retains: ‘The American Philosophical Society Held at Philadelphia for Promoting Useful Knowledge.’

Thomas Jefferson was a young man and Benjamin Franklin was old when the two worked together in the cause of American independence; but the two could meet on common ground at many points. Science, especially physical and mechanical science, was one of the best established of the common fronts existing between the elderly Philadelphian and the youthful Virginian; both liked to try to find out what made things go, and both had a decided bent towards the invention of ingenious and practically useful gadgets, like Franklin’s lightning rod and heating-stove and Jefferson’s improved mold-board plow.

At one point, however, they diverged: Franklin was a city businessman, Jefferson was by choice a farmer. In this, Jefferson was more nearly at one with his fellow Virginian, George Washington. This aspect of Jefferson’s life and interests was discussed at the meeting of the Philosophical Society by M. L. Wilson, director of extension work in the U. S. Department of Agriculture. Owner of a hill farm (for Monticello stands on a mountain top), Jefferson was one of the country’s first practitioners of soil conservation methods, including the contour-plowing that is now being preached as the newest thing in soil-saving devices. He also introduced new plants and improved livestock varieties brought from Europe, and was an early believer in crop rotation.

Jefferson founded the University of Virginia (it is the one boast of achievement carved in his epitaph) just as Franklin was active in the establishment of the University of Pennsylvania. In one of his statements of desirable university policy, Jefferson came out positively for the inclusion of agricultural science among the subjects to be taught—something of a novelty in a day when higher education still centered almost exclusively around the classics. Yet Jefferson is not to be counted among educational leaders who place sole emphasis on the scientific and ‘practical’ to the neglect of the classics and the humanities. He was himself well educated in Latin and Greek, but in his hands the old languages were not ‘dead,’ as Dr. Louis B. Wright, of the Henry E. Huntington Library and Art Gallery, pointed out. ‘In the early years of the republic,’ Dr. Wright reminded his hearers, ‘the classics had not yet foundered on the arid shores of pedantry.’

Jefferson once declared: ‘No occupation is so delightful to me as the culture of the earth.’ Translated into Latin, that could easily be passed off as a quotation from the Georgics, Vergil’s great poetic work in praise of country living.—FRANK THONE.

A THEORY OF GRAVITATION

A theory of gravitation that makes it a push instead of a pull, thus avoiding the bugbear of action at a distance, and makes it a repulsion deep within the stars and planets, was presented by Anatol James Sneiderov at the meeting of the American Geophysical Union. Mr. Sneiderov holds the Russian degree of ‘Magister in Military Engineering’ and is also a civil engineer. He is at present on the faculty of the George Washington University, where the meetings were held.

There is something occult about the motion of force at a distance, Mr. Sneiderov said. His theory is in a sense a modernized version of the theory of the Swiss scientist Le Sage, proposed some years ago. According to this theory, streams of particles incessantly traversing space in all directions impinge upon the farther sides of two planets or other celestial objects, but are screened from the nearer sides by the planets themselves, and so push them together.

In place of streams of particles, Mr. Sneiderov substitutes streams of energy. These pass through matter, losing energy as they go. He has developed a formula for the force produced which is more complicated than Newton’s, but not so complicated as Einstein’s. Outside a planet it gives the same force as Newton’s law, and agrees with Einstein when account is taken of the increase of mass with the speed.

But inside a planet, Mr. Sneiderov gets very different results. The attractive force diminishes below the surface down to a certain level, where it becomes a repulsion which then increases exponentially the rest of the way to the center. According to Newton, the attractive force diminishes continually and becomes zero at the center. According to Mr. Sneiderov the force around the center of the earth is so great that all atoms are disintegrated, the nuclei stripped of the surrounding electrons. The core of the earth thus becomes an ‘electronic gas.’ This explains why the core does not transmit transverse earthquake waves which it would if it were solid as hitherto supposed.

These great forces in the deep interior of the earth are mainly responsible for earthquakes, and Mr. Sneiderov believes that a fuller understanding of them may lead to the possibility of predicting earthquakes long before they happen.—MORTON MOTT-SMITH.

MEASUREMENT OF LARGE QUANTITIES OF WATER

Radium in tiny quantities may be used to measure large masses of water, but the method is not as simple as it seems at first glance, was pointed out by Dr. Victor F. Hess, German Nobel prizeman in physics now at Fordham University, at the Washington meeting of the American Geophysical Union.
NEW WILEY BOOKS

TREATMENT OF EXPERIMENTAL DATA
By ARCHIE G. WORTHING, University of Pittsburgh, and JOSEPH GEFFNER, National Steel Company.
This book is designed primarily for physicists, chemists, and engineers. It tells how to set up tables, including instruction on the use of legends; how to prepare graphs giving sufficient descriptive information so that they may be read easily; how to set up equations; how to determine, express and apply precision indexes, and similar matters.
Approximately 365 pages; 6 by 9; Probable price, $4.50

EMOTION IN MAN AND ANIMAL
By PAUL THOMAS YOUNG, Professor of Psychology, University of Illinois.
A new book that offers authoritative material, for study and discussion, on emotion, attitudes and motives. It is intended to promote an understanding of the individual. The data presented are of importance for students of child psychology, education, anthropology, physiology, social and experimental psychology, and allied fields.
Approximately 415 pages; 6 by 9; Probable price, $3.50

ORGANIC SYNTHESSES, Volume 23
By LEE IRVIN SMITH, University of Minnesota; Editor-in-Chief.
Tested laboratory methods for preparing various organic chemical reagents in one-half-pound to five-pound lots. This volume covers the preparations worked out in the past year.
124 pages; 6 by 9; $1.75

ORGANIC SYNTHESSES, Collective Volume II
Edited by A. H. BLATT, Queens College, Flushing, New York.
This volume contains in revised form the material which appeared in the annual volumes 10 through 19 of "Organic Syntheses." Modifications and improvements in procedures are incorporated, and eleven procedures not appearing in the single volumes have been added. Advances in methods are recorded.
654 pages; 6 by 9; $6.50

TEXTBOOK OF ORGANIC CHEMISTRY
By GEORGE HOLMES RICHTER, Assistant Professor of Organic Chemistry, The Rice Institute.
In this edition the content has been rearranged, and much new material has been added. Among the changes should be noted: the collection of the material on natural products in a single chapter; the inclusion of an entire new section on the terpenes; the introduction in Chapter I of the concept of resonance; the enlargement of the chapters on aliphatic hydrocarbons; the inclusion of new material on plastics.
Second Edition: Approx. 824 pages; 6 by 9; Probable price, $4.00

CHEMICAL SPECTROSCOPY
By WALLACE R. BRODE, Professor of Organic Chemistry, The Ohio State University.
A completely modernized edition, with revised tables for emission analysis, an up-to-date revision of the section on theoretical spectra, an expansion of the section on quantitative emission spectra, and other important additions.
Second Edition: Approx. 631 pages; 6 by 9; Probable price, College Edition, $6.50

JOHN WILEY & SONS, Inc., 440-4th AVE., NEW YORK
Some indirect means is desirable for accurately measuring large quantities of water in reservoirs, where direct weighing is not possible. One method that has been tried has been to dissolve a lot of salt in the water, then collect a sample of it as it comes out of the tailrace of the power plant and determine the salt concentration in that.

Some time ago the noted French physicist, Dr. J. Joly, suggested the use of minute amounts of radium, which diffuse rapidly and evenly in water, but he did not do any experimental work on the method himself. Dr. Hess has done so, making use of a large tank in Pennsylvania, loaned for the purpose by a power company.

Sources of error were found to be more numerous than anticipated. There was a tendency for part of the radium to become tied up in insoluble form with "hardening" chemicals in the river water; this could be partly overcome by adding hydrochloric acid. Minute but variable amounts of radium are naturally present in the water, so that their effect has to be measured in advance and proper allowances made. Even the type of glassware used in the laboratory may falsify results unless great care is exercised. Dr. Hess concluded by cautioning his hearers not to "attempt blindly to set out to measure large volumes of water with too little radium."

LIGNITE DEPOSITS OF THE UNITED STATES

The huge lignite deposits in the United States are a potential source of war power was reported to the American Society of Mechanical Engineers by Professor C. J. Eckhardt, Jr., and C. W. Yates, of the University of Texas. Only an insignificant fraction of the nation's 939 billion ton reserve is being utilized. But soaring fuel consumption to meet war needs brings increased attention to this low-rank fuel.

Lignite, often called "brown coal," is more widely used in Europe than America. It appears to be a halfway station between wood and coal, occurring at a more youthful age than its true coal relatives.

Lignite contains more water and ash than ordinary coal. But misconceptions are commonly held about the properties of lignite that stand in the way of its more extended use. "The failure to use appropriate grate surfaces has caused this fuel to be maligned with regard to sifting losses from size reduction of the fuel particles as heat is applied and moisture is driven off. Yet the water losses are no greater than those of some of the more admirable fuels and the size reduction while this fuel burns can be rendered inconsequential. The most serious misconceptions relate to its tendency to undergo size-reduction processes while in storage and while being handled."

More than a sixth of the nation's mineral-fuel reserve is lignite. Principal deposits are mainly in Texas, Montana and the Dakotas, where no mountain-making movement of the earth's crust has occurred.

ITEMS

Ocean current surveys for the Navy will be made this spring on the Atlantic Coast by floating radio robots—boat-like metal buoys with radio masts fifteen feet high. A streamlined meter containing a compass will be suspended from each buoy to record the velocity and direction of the current. It automatically broadcasts this to the mother ship. At the receiving end, the radioed impulses of the meter are recorded by a robot mechanism in groups of three; the distance between two of the "ticks" giving the velocity and the location of the third between them giving the direction of the current. Dr. L. O. Colbert, of the U. S. Coast and Geodetic Survey, speaking before the American Geophysical Union stated that the new radio current meter decreases the number of vessels needed for such a survey as simultaneous observations can be made at several current stations. Another advantage is that the streamlined current buoys can remain at their posts during bad weather and in strong currents with less difficulty than a ship anchored under similar conditions.

A PHOTOGRAPHIC recorder used to replace previous methods of obtaining a series of wind velocity measurements was described at the meeting of the American Geophysical Union by Dr. Leonard B. Corwin, of the U. S. Soil Conservation Service. Dr. Corwin stated that the recorder was developed to secure simultaneous measurements of wind velocity at several different levels where electrical power was unavailable. The dials or faces of several counters were photographed as the simplest and surest way to obtain multiple records. By adjustments, photographic observations could be obtained at intervals of one minute up to an hour or more. Dr. Corwin stated that the photographic recorder "appears to offer a means of obtaining an autographic record of many if not most meteorologic and climatic values." Further simplification of the apparatus is contemplated.

SYNTHETIC plastic material to supplement the available supply of mica necessary in war-used electrical equipment is promised in the near future. Priorities have been granted for the materials to construct a plant where the synthetic product will be made. It is expected that the plant will be in production about July 1. The material is a synthetic polymerized resin. It is reported to have high temperature resistance and low dielectric loss. These properties will permit its use in several types of radio equipment now requiring mica. It will be known under the trade name of Polelectron. This new plastic is a product of the General Aniline and Film Corporation. It has been tested for the corporation by the laboratories of the Massachusetts Institute of Technology and those of one of the large industrial companies making electrical apparatus. It has been tested also at Wright Field. Much of the mica now in use is obtained from India and Brazil. It has been called by the War Production Board an urgently needed raw material vital to mechanized warfare, and mica users and fabricators were warned many months ago to conserve the supply in every way possible. One ton of the new plastic, fabricated into mica replacement material, will replace from ten to fifteen tons of the imported block mica, it is expected, thus saving much strategic material.
Aerial Photographs
AND THEIR APPLICATIONS
By H. T. U. SMITH
ASSISTANT PROFESSOR OF GEOLOGY, UNIVERSITY OF KANSAS

This is a practical, profusely illustrated text that provides a working knowledge of the simpler methods of making maps from aerial photographs and places greatest emphasis on the interpretation and use of aerial photographs, with special reference to the needs of the geologist, geographer, engineer and military scientist. Contrary to other books in its field Smith’s Aerial Photographs and Their Applications deals with map-making as a means to an end, rather than as an end in itself, and stresses the details of practical procedure instead of discoursing on confusing theoretical matters. A large number of its illustrations are arranged for stereoscopic examination. To be published in May.

Minerals and Rocks
By R. D. GEORGE
EMERITUS PROFESSOR OF GEOLOGY, UNIVERSITY OF COLORADO

This new book presents a concise, well-organized, and broadly inclusive discussion of the ever-increasing number and volume of earth materials, both metallic and non-metallic, which have become essential to present-day industries and have been instrumental in enriching life. Each element is fully described, its uses, both alone and in compounds, are explained; and the minerals from which it is derived are described. The illustrative material includes line drawings and photographs, picturing crystal forms, ore bodies, rock structure, apparatus, etc., and diagrams representing the chemical and mineral compositions of the rock families. Price, $6.00.

D. Appleton-Century Company
35 W. 32nd St. New York, City
Just Published

PHYSIOLOGICAL REGULATIONS

BY EDWARD F. ADOLPH, Ph.D.

Associate Professor of Physiology in the University of Rochester

A valuable Reference and Laboratory Aid for Physiologists, Biologists and
all other science workers interested in metabolisms.

The major subjects of this study are: Water exchanges in animals; Rates of certain classes of physiological processes; Quantitative comparisons of like functions in diverse species and individuals; Organ and tissue exchanges; Similarities and contrasts in the metabolisms of diverse components.

CONTENTS

Water Exchanges of Dog
Other Types of Water Increment (Dog)
Variabilities of Water Relations (Dog)
Water Relations of Man
Water Relations of Frog
Water Relations of Other Species
Equilibrations in Parts of Organisms
General Features of Water Exchanges
Some Other Correlatives of Water Content (Dog)
Some Other Correlatives of Water Content (in Other Species)

Further Correlatives of Water Content and Exchanges
Water Balances and Exchanges; Recapitulations
Heat
Diverse Components
Uniformities and Comparisons among Components
Choosing Physiological Variables
Physiological Regulations
Some Speculations Concerning Regulations
Conclusions, References and Index

495 pages 46 tables 186 graphs price $7.50

THE JAQUES CATTELL PRESS, Lancaster, Pennsylvania

Zenker Fixed Tissues Reported Routinely within 24 Hours from the Time the Fresh Tissues Are Received in the Laboratory

*METHOD

Fixation _ Zenker's Fluid _ 4 hours
Washing _ Water _ 1 hour
Dehydration _ 70% Alcohol _ 1 hour
80% _ 1 hour
90% _ 1 hour
95% _ 1 hour
100% _ 1 hour
Chloroform or Xylol _ 1 hour
Chl. or Xylol & Paraffin _ 1 hour
Paraffin #1 _ 2 hours
Paraffin #2 _ 2 hours

The above method for preparing tissues for sectioning is now used extensively. The whole process is accomplished by means of the AUTOTECHNICON from 5 P.M. to 9 A.M. daily.

* A complete booklet of methods for preparing tissues for sectioning as used in pathological laboratories on request.
THIS Cenco-Hutchinson airplane apparatus demonstrates and measures the life and drag resulting from relative motion between a section of airplane wing and the air.

In use, the wind velocity may be maintained substantially constant and the angle of attack varied; or the angle of attack may be kept constant and the wind velocity varied.

The apparatus consists of a model section of an airplane wing which may be clamped in supporting arms so that the angle of attack—or the angle between the section and the direction of the wind velocity—may be varied. The wing, or airfoil section, is counterpoised by weights slidable on extensions of the arms on the opposite side of pivots, which are mounted in a swinging frame. The frame itself swings on a horizontal axis; it is carried by substantial vertical supports. Means are provided on the horizontal arms to counterbalance the lift and on the swinging frame, the drag. These consist of graduated arms with rider weights and indicators to show the condition of balance.

To Measure

AERODYNAMIC FORCES

No. 75441 Airplane Forces Apparatus as illustrated but without support stand or cambered wing section.

Each $38.00
Chemical Indicators

C&B Chemical Indicators include all of the common indicators used in analytical and biological work, the hydrogen-ion indicators recommended by Sorenson and Clark & Lubs, and many rare indicators suitable for special work.

These indicators are available in the dry form and in solution, ready to use.

Certain indicators are offered in the form of Test Papers—in vials containing 100 strips and in sheets 8" x 10".

Our new 1943 catalog upon request.

The COLEMAN & BELL Co.,
Manufacturing Chemists Norwood, Ohio, U.S.A.

Pure Distilled Water

- For Research Work
- Use in Sensitive Solutions
- Or Laboratory Determinations

Stokes Automatic Water Stills produce distilled water of the highest quality. They are simple, rugged, efficient units, with purity of distillate thoroughly safeguarded by triple vapor baffles to eliminate entrainment, automatic "bleeder" device to remove concentrated impurities, large-area boiling chambers, solid block tin condenser tubes, Pyrex glass covers and other features. No. 171 type stills (shown) are available in electrically-heated, also gas- and steam-heated models, from ½ to 1½ g.p.h. capacity. Other stock models, up to 100 g.p.h. capacity. See your own laboratory supply dealer for complete information or write direct for new 24-page illustrated catalog.

*TYPICAL ANALYSIS OF DISTILLATE

Total Solids as Parts per 100,000
Total Solids .. 0.16
Volatile Solids .. 0.12
Inorganic Solids .. 0.12
Nitrogen as
Free Ammonia .. 0.0035
Albuminoid Ammonia 0.0000
Nitrates ... 0.0000
Nitrites ... 0.0000
Chlorine .. 0.00
Bacteria per cc ... none

*Certified.

F. J. STOKES MACHINE COMPANY, 5958 Taber Road, Olney P. O. Phila. Pa.

THE AUTOTECHNICON

U. S. Patent No. 2,157,975
and Other Patents Pending.

THE TECHNICON CO.
NEW YORK, N. Y.
SOLTYS
ACTIVE HYDROGEN APPARATUS

(MICRO GAS ANALYSIS APPARATUS)

With accessories for preparing Grignard Reagent

For the quantitative determination of active hydrogen atoms and of molecules or groups of molecules which react with Grignard Reagent even though methane is not evolved, i.e. where the moles of Grignard Reagent are added to the molecule. Accuracies within approximately 1% are possible but depend upon the structure of the compound. Determinations can be made with milligram samples.

5936-A. Soltys Active Hydrogen Apparatus, A.H.T. Co. Specification, as above described, complete assembly as shown in illustration consisting of Reaction Vessel A (Methane-Generator), Gas Burette with Manometer B (Methanometer), Shaking Device C, on Support D, Burette Meniscus Reader E, two Reaction Flasks F, Monel metal Water Bath K, Micro Burner L, train for drying nitrogen gas consisting of Drying Tube M, Gas Washing Bottle N and Friedrich Gas Pressure Valve P, Grignard Reagent Preparation Apparatus R on support S, improved form Benedetti-Pichler Drying Block T, Ether Bottle U, Storage Jar V, Dropping Bottle W, two Wash Bottles X labelled “Acetone” and “Alcohol 96%,” Alber Micro Weighing Tube Y, two thermometers, two pipettes 1 ml in 1/10ths, beaker 10 ml, with necessary Spring-Grip clamps, coil springs and rubber tubing for connections. With directions for assembling, and with burners for artificial gas, but without nitrogen tank or pressure reducing valve for same .. 193.25

More detailed information sent upon request

ARTHUR H. THOMAS COMPANY
RETAIL—WHOLESALE—EXPORT
LABORATORY APPARATUS AND REAGENTS
WEST WASHINGTON SQUARE PHILADELPHIA, U. S. A.

Cable Address, BALANCE, Philadelphia
As a leader in the development of the modern Microtome, Spencer is interested in furthering the effectiveness of its use. Extensive research has resulted in a new booklet by Oscar W. Richards, Ph. D., Research Biologist of the Spencer Lens Company. We believe that this information will be helpful to all users of Microtomes.

*A copy will be mailed upon receipt of 25 cents in coin or stamps.

Spencer LENS COMPANY
BUFFALO, NEW YORK
SCIENTIFIC INSTRUMENT DIVISION OF
AMERICAN OPTICAL COMPANY