WILEY BOOKS
for your V-12 and AST courses

INTRODUCTORY COLLEGE CHEMISTRY

By H. G. DEMING, Professor of Chemistry, University of Nebraska. Second Edition Completely Revised in Collaboration with B. CLIFFORD HENDRICKS, Professor of Chemistry, University of Nebraska.

A course for beginners. In this book the simplest of the important principles of chemistry are interwoven in an interesting way with the story of how chemistry grew and developed and a vivid description of the part that it plays in modern life and industry. The final chapter deals with the chemistry of food and nutrition. Simpler and more concise than either the "General Chemistry" or the "Fundamental Chemistry."

Second Edition: 521 pages; 6 by 9; $3.00

FUNDAMENTAL CHEMISTRY

By HORACE G. DEMING.

An elementary book for college classes. It reveals the spirit of modern chemistry and gives a brief survey of its achievements as a science. Its purpose is to show how a chemist thinks about chemical problems of everyday life. It is remarkable for the care that is taken in defining and explaining words, thus leading the student gradually to acquire an extensive and accurate technical vocabulary.

756 pages; 6 by 9; $3.50

GENERAL CHEMISTRY

By HORACE G. DEMING.

Substantiality and exactness together with its popular manner of presentation have made this textbook one of the few permanently outstanding general chemistries. It may be used equally well for beginners and by students with previous knowledge of chemistry, as arrangement of material permits somewhat different sequence of topics in the two cases. Briefer and simpler than the author's "Fundamental Chemistry," and gives more attention to the applications of chemistry in modern industry.

Fourth Edition: 769 pages; 5½ by 8½; $3.50

LABORATORY MANUAL OF COLLEGE CHEMISTRY:
Elementary Course

By HORACE G. DEMING.

This manual is designed for use in the elementary course in college chemistry. Each of the forty-eight experiments consists of several parts, from among which a choice may be made according to the length of the laboratory period. At frequent intervals, from the very first, laboratory problems are included for which the student must devise his own experimental procedure, based on experience gained in the exercises just preceding.

268 pages; 5½ by 11; $1.75

EXERCISES IN GENERAL CHEMISTRY
AND QUALITATIVE ANALYSIS

By HORACE G. DEMING and SAUL B. ARENSON, Professor of Inorganic Chemistry, University of Cincinnati.

Offers a wide range of experiments, with accurate and clearly written directions and comments. The first part of the book presents exercises including inorganic preparations, verifications of the quantitative laws in chemistry, fundamental concepts such as oxidation and reduction, physico-chemical measurements, photography and the sensitivity of qualitative tests, etc. The latter part deals with systematic qualitative analysis of inorganic mixtures.

Fourth Edition: 326 pages; 5½ by 8½; $1.80

JOHN WILEY & SONS, Inc., 440-4th Ave., New York 16, N. Y.
GIANT MOLECULES AND DISEASE VIRUS PARTICLES

Fresh evidence that virus disease particles are giant protein molecules endowed with the life-like properties of reproduction and parasitic feeding has been obtained by Dr. Max A. Lauffer of the Rockefeller Institute for Medical Research at Princeton, N. J., and was exported by him at the Pittsburgh meeting of the American Chemical Society.

This new advance in science's war against disease was made through the use of a powerful weapon known as the ultracentrifuge, which whirls tubes of solutions at speeds far exceeding those of rifle bullets and cannon shells, separating substances or particles of different densities and sorting them in layers, as a cream separator separates cream from skim milk.

Identification of virus particles as giant molecules was made tentatively eight years ago by Dr. Wendell M. Stanley, also of the Rockefeller Institute, who first obtained a disease-bearing protein from sick tobacco plants in pure crystalline form. At that time it was learned that these suspected molecules are enormous, with molecular weights in the hundred-thousands, as contrasted with the mere tens or hundreds that represent the weights of ordinary molecules like those of sugar or gasoline.

Dr. Lauffer used a special container in the ultracentrifuge, in which an adjustable perforated barrier permits any desired fraction of the contents to be removed without disturbing the rest.

A solution of the disease virus was whirled in this container until just one fourth of it remained above the barrier. When this was removed and samples of it inoculated into healthy plants, it was found to have one fourth the disease-causing ability of the whole solution. This constituted strong statistical evidence for the identity of protein and virus.

The virus on which the Rockefeller Institute researches has been conducted is that of tobacco mosaic, one of the worst loss-causers in tobacco fields. However, that in itself is of less importance than the possibility of transferring the conclusions to apply also to other disease viruses, which include the microscopically invisible causes of such serious human ills as infantile paralysis, yellow fever, smallpox and influenza.

FRANK THONE

PROTEIN FROM CORN GERM

With meat shortages making every one increasingly protein-conscious, news that half-billion pounds of good protein a year may be made available for human consumption comes from the chemical laboratories of the University of Illinois. It is corn protein, in the germ or unsprouted plant tucked in the corn grain, which is at present used principally as animal feed because of the tendency of corn germ to turn rancid quickly.

A new kind of "de-fatted" corn germ, with this oil extracted and saved, has been put through a series of tests on laboratory animals by Dr. H. H. Mitchell at the university, who has now made a preliminary report to the National Research Council in Washington, D. C. In it he states that "except for the cashew nut, defatted corn germ is the only plant food we have studied, the protein of which possesses as high a biological value as lean meat."

To solve the problem, corn germ spoilage, a commercial firm in Monticello, Ill., the VioBin Corporation, has devised a method of extracting the oil at "pre-cooking" temperatures. The fat content is reduced to 2 per cent., moisture to 8 per cent., so that the keeping qualities of the defatted germ have been greatly improved. When the corn germ was found to be palatable to human beings, the University of Illinois began checking the nutritional values of this new food, hopeful of increasing the value of the corn crop.

Dr. Mitchell's feeding experiments showed that defatted corn germ contains 21 per cent. protein, which is 85 per cent. as digestible as beef protein and with a biological value quite as high. It is also rich in several vitamins and has a high mineral content. Its iron content assays at the exceptional figure of 300 parts per million.

AFRICAN MINERAL RESOURCES

Africa's mineral wealth will undoubtedly figure importantly in the claims of European nations to colonial adjustments in the post-war period. Africa produces large quantities of essential metallic and non-metallic minerals which Europe lacks. Control of the African products is therefore an important advantage. Background information relative to the mineral resources of Africa is given in a new publication of the University of Pennsylvania Press, prepared by A. Williams Postel.

There are three principal metallogenetic provinces or mineralized areas in Africa. Along the Mediterranean is the iron-phosphate area. An area stretching from the Katanga district, in the Belgian Congo, down into Northern Rhodesia is reported to be the largest copper region in the world. It also produces radium and cobalt ores. The third great area is in South Africa, in the Transvaal and Southern Rhodesia. This area produces platinum, chromite and asbestos. The Belgian Congo now produces the 77 per cent. of Africa's diamonds, the rest being obtained in Angola, Gold Coast, the Union of South Africa and Sierra Leone.

Africa's known coal deposits are not very important, from the inter-continental standpoint. Petroleum is found only in small quantities, the principal supply being in Egypt, where production is only about 6,000,000 barrels a year, according to the U. S. Bureau of Mines. This is about the amount produced in 36 hours in the United States. Little lead and zinc ore has been found in Africa. Most other metals are found in commercial quantities.

Africa produces 99 per cent. of the world production
of diamonds, both for jewelry and industrial uses. It produces much gold, some 40 per cent. of the total world output.

In 1938 the continent produced over 47 per cent. of the world’s supply of vanadium, used principally in special alloy steels. Peru is now an important source of this metal for American use.

Other principal African metal ores, and their percentage of world production, are chromium, 31 per cent.; manganese, 21 per cent.; copper, 18 per cent.; tin, 11 per cent.; and platinum, 9 per cent. Silver, iron, nickel, tungsten, molybdenum, titanium, lead, zinc, antimony and cadmium are all mined in exportable amounts.

Phosphates from North Africa constitute the most important non-metallic mineral. Approximately 36 per cent. of the world’s supply came from this area before the war, and European agriculture depended upon it largely for its phosphate fertilizers. Fluorspar, asbestos and graphite were the other more important non-metallic products.

SPITTING COBRA

Cobra does not really spit its venom, in their peculiar brand of chemical warfare; they squirt it through fang cavities modified in such a way that the thin jet of deadly stuff is thrown straight forward. This has been demonstrated in studies by Charles M. Bogert at the American Museum of Natural History.

Only a few species of cobra are “spitters.” The fang cavity of the non-spitting kind runs straight down through the fang, to an opening just outside the tip and slightly above it. This is orthodox snake-fang structure; it functions like a hypodermic needle. A stream of liquid forced through is projected in the direction the fang itself is pointing.

In the fang of a spitting cobra, however, the channel takes a sudden turn as it reaches the discharge orifice, so that a forcibly ejected stream comes out at an angle of approximately 45 degrees to the front surface of the fang. The snake is thereby enabled to hold its fangs in normal position as it menacing enzyme or prey, and yet throw the venom-jet straight forward.

The eyes seem to be the invariable target, in encounters with spitting cobras, and hits can be scored at ranges variously reported to be as much as six to 12 feet. In human beings, venom produces immediate blindness, followed by severe pain and inflammation lasting several hours. There seems to be no permanent injury.

Mr. Bogert suggests that in addition to its defensive function against such enemies as man and mongoose, the spitting habit may aid in the capture of prey. Dr. David Macht, toxicologist of Baltimore, has informed him that the venom can be absorbed through the eyes of smaller animals, producing symptoms of general poisoning.

“Spitter” snakes are to be found in the tropics of both Asia and Africa. Despite their individually dangerous character, they do not constitute a really serious menace to the lives of our soldiers on overseas duty because they are not numerous, and most of them avoid trouble as much as possible. However, it is never wise to bend over a snake you think you have killed; some species have a wicked trick of “playing possum,” and suddenly getting in one last lick at their attackers.

ITEMS

Summer’s end on August 31 (as the weatherman reckons it) leaves the densely populated Middle Atlantic region with a distinctive but unenviable record for one of the worst droughts in its history, U. S. Weather Bureau records show. “At Washington, D. C., near the center of the eastern drought area, the summer, June to August, was the driest since 1854, while the average summer temperature was the highest in more than 100 years,” the meteorologists state. The drought area in the South-west has persisted and continued to spread, until now a great dry zone grips the center of the country, from Kentucky to Nebraska, and from Missouri to Mississippi. Yet immediately to the north of that, in Iowa for example, there are complaints of too much rain, with dry, warm weather still badly needed to mature the corn crop. There have also been heavy rains in the Northwest and Northeast. In the latter region the drought, which had been shared with the Middle Atlantic region, was relieved though not fully broken. The late summer drought has been adding its effects to the already troublesome meat-supply problem by causing many cattle to lose flesh. By reducing the quantities of feed it will have a further, delayed effect during the coming winter and next spring.

Welding layers of fibrous material together with synthetic resins has produced a plastic that is being drafted for sea duty. Plastic propeller-shaft bearings on sub chasers and other light war vessels are given longer life and flying salt spray only makes them run more smoothly. Metal bearings are corroded by salt water and the heavy wood sometimes used wears out nine times as fast as the plastic. V. E. Enz, Westinghouse marine engineer, states that “naval vessels can stay on active duty longer without drydocking for bearing repairs.” Developed by Westinghouse, the plastic is also used for gears to prevent sparks in explosive atmospheres and as valve parts formerly made of bronze. Marine engines are “floated” on blocks of the plastic to reduce vibration and noise. This same plastic, Micarta, is being used by the Army for helmet liners.

The War Production Board states that corundum, a natural alumina abrasive used in manufacturing grinding wheels for tools and lenses, is now being mined again in the United States for the first time since the last war. The mining operations are carried on in South Carolina. American needs for this important abrasive material have been met in the past years by importation from South Africa. A large plant for the treatment of boulder corundum is located at Pietersburg in Northern Transvaal. Corundum is reported to be widely distributed in the State of Musore, India. Little use of the Indian supply is reported. Corundum, after mining, is crushed and sized. The coarse-grain products are sold to manufacturers of grinding wheels and the fine products to optical lens grinders. The fine dust after use by optical instrument workers is sold to retail opticians. In 1940 the United States imported nearly 6,000 tons of corundum. The South Carolina mineral is reported to be of quality closely approximating the African product.
From Foods to Firearms

All along America's war production line, from its start with the raw materials in the field, through the laboratory to the final vital inspections, Bausch & Lomb Wide Field Stereoscopic Binocular Microscopes are at work.

They are helping in the quality control and processing of foods to feed the United Nations . . . in the manufacture and inspection of arms for all the forces of Freedom. They are in daily use in the field, in the laboratory and the shop. Filling the gap in magnification between the hand lens and the compound microscope, the Wide Field Binocular Microscope offers a three-dimensional view of the object under examination. The user sees the object under magnification, but with full perception of depth and perspective.

Like many other Bausch & Lomb instruments developed for the peacetime needs of education, research and industry, today the B&L Wide Field Binocular Microscope is serving America's wartime needs . . . taking a place beside the actual instruments of war which B&L manufactures.

Here again, because of its wartime accomplishments, Bausch & Lomb will be able to extend its optical services to peacetime pursuits when Victory is won.
PHYSICS TELLS WHY
By OVERTON LUHR

The Book and the Author
The late Professor Luhr was a noted research scientist who gained wide recognition for his work in nuclear physics. Shortly before he died he completed “Physics Tells Why” which will be a monument to his love for his subject. It is a new kind of scientific book, utilizing the Socratic method of teaching and is a model of clarity and simplicity. It is a book for the student, the teacher, the curious minded youngster and for the grown-up who is interested in the whys of natural phenomena.
The unique cartoon-style illustrations by Ruth Schmidt add immeasurably to the pleasure of reading this book.

What the Reviewers Say

"Charming, yet scholarly book in popular style and language but interesting to students . . . Recommended."
Library Journal

"An excellent refresher that can be understood by anyone with a high school education."
The Philadelphia Inquirer

"A book which transforms the mysteries of physics into understandable fascination, and makes everything from osmosis to radioactivity seem to give pleasure rather than pain."
Book-of-the-Month Club News

306 pages
Many illustrations
$3.50

THE JAQUES CATTELL PRESS
Lancaster, Pa.

THE AUTOTECHNICON

U. S. Patent No. 21,157,875 and Other Patents Pending

THE TECHNICON CO.
New York
Modern war, it may truthfully be said, is a war of chemistry.

"To keep the U. S. forces fighting," states one authority, "industrial chemistry must produce five pounds of explosives for every soldier every day." Incendiary, depth and aerial bombs, smoke screens, flares and most of the ingredients for the devastating fire power of our land, sea and air forces must come from our chemical plants.

More than this, chemistry must create new products, new substitutes, to replace lost sources of rubber, fuels, metals and other materials.

In accomplishing this task the microscope is playing an indispensable part. Spencer is devoting its expanded facilities to the unprecedented wartime demand for microscopes of all types.

Optical instruments are so vital to war and public health that the nation's needs absorb practically all of Spencer's greatly increased production.

Spencer LENSS COMPANY
BUFFALO, NEW YORK
SCIENTIFIC INSTRUMENT DIVISION OF
AMERICAN OPTICAL COMPANY