Just Published

A new book of immediate importance

NAVIGATION

By Lyman M. Kells, Willis F. Kern and James R. Bland

Department of Mathematics, United States Naval Academy

479 pages, 6 x 9, 392 illustrations. Textbook edition, $3.75

A complete course on the subject, dealing with the best and latest methods used in navigation. Unusual simplicity is obtained by logical arrangement of material and careful preparation for each development. The book outlines the mathematical background for each theory of navigation, and treats each one thoroughly by means of clear exposition, illustrative examples, and graded exercises.

This text is also available in two separately published volumes:

Part I. Coastal and Inland Waterways Piloting. 288 pages, 6 x 9, 265 illustrations. Textbook edition, $2.50

Each important topic is first treated in detail so that the facts and processes connected with it are well understood. Then follows a set of exercises, calling attention to the most important ideas, and causing the student to think about the situation, reason about it, and become familiar with its various ramifications. Next, easy numerical problems are presented, followed by important problems of greater difficulty, corresponding to those encountered in the actual practice of piloting.

Part II. Celestial Navigation and Nautical Astronomy. 191 pages, 6 x 9, 127 illustrations. Textbook edition, $2.00

Navigational theories are thoroughly treated in systematic, independent discussions, with a wealth of exercises graded according to difficulty. The book considers the four important methods of solving a special triangle of which two sides and the included angle are known. Some of the most recent material deals with the Hagner Planetarium and the Rude Star Finder for locating heavenly bodies and understanding their motions, and with the Sonic Depth Finder for locating position and making landfalls even in darkness and fog.

Send for copies on approval

McGRAW-HILL BOOK COMPANY, INC.

330 West 42nd Street, New York 18, N. Y.
SOME PAPERS READ BEFORE THE CINCINNATI MEETING OF THE AMERICAN ASTRONOMICAL SOCIETY

Reported by Charles Federer, Harvard College Observatory

ORION’S TRAPEZIUM STARS MAY SHOW RELATIVITY SHIFT

Every amateur astronomer who possesses even the smallest of telescopes has turned it to the great nebula in the sword of Orion and discovered the four brilliant, blue stars buried in the nebulousness which form the Trapezium.

Dr. Otto Struve, director of Yerkes and McDonald Observatories, reported to the Cincinnati meeting of the American Astronomical Society the results on his spectrographic study of these four stars. Dr. Struve and Dr. John Titus, a Yerkes astronomer, jointly observed the Trapezium stars in March and April of this year, but they found the spectra of the stars difficult to measure because the bright, emission lines of the nebula itself were superimposed over the stellar spectrum in each case. They were, however, able to determine that the lines of the Trapezium stars were displaced toward the red end of their spectra more than the emission lines from the Orion nebula.

The usual interpretation of the shift of lines in a spectrum, other factors being accounted for, is that the star is approaching us if the lines are shifted toward the violet and receding from us if the shift is to the red. The average velocity of recession for the nebula is about 10 miles a second, but the Trapezium stars show red shifts indicating that they are going away from us nearly twice this fast. They have always been thought to have been closely associated with the nebula, so it is surprising to find that they are apparently moving as a group through it, and will some day be out of its vicinity.

An alternative explanation was suggested by Dr. Struve, however, for he called attention to the probable large masses of these stars. As they are blue stars with very hot surfaces, they can be ordinary stars and still shine as brightly as red giant stars many times their size. This combination of large mass and small size is just what is required to produce an observable Einstein or relativity shift in the spectrum of a star. The large mass produces a strong gravitational field, particularly strong in a small star because its surface is close to its center. Light escaping from such a field loses some of its energy on the way out and appears redder than normal.

It was in the white dwarf stars, such as the companion of Sirius, which has a density 50,000 times that of water, that the relativity shift predicted by Einstein was first actually observed, helping to prove his theory. Dr. Struve’s extension of observations to more ordinary stars such as those in the Trapezium represents a triumph of observational astronomy. This is, however, only proposed by Dr. Struve as a substitute to considering that the four stars are moving through the nebula, and that it is not known now which alternative is the true one.

CEPHIDE VARIABLES

PULSATING stars known as Cepheid variables are among the best timekeepers in the world. Particularly regular in their pulsations are the short-period or cluster-type Cepheids, which go through a complete expansion and contraction in about half a day. Their changes in size are observed by us as variations in the positions of the lines in their spectra, which are also accompanied by fluctuations in the brightnesses of these stars.

So regular are such stars, for instance, the one known as AR Hercules, a tenth-magnitude star in the constellation of Hercules, that Everett C. Yowell, of Columbia University, has been able to determine its period as 11 hours, 16 minutes and 51 seconds. This information he derived from examining Harvard plates of the region of the sky containing this star and extending from 1899 to 1925. But on plates from the latter time to 1941, the period of the star is found to be 11 hours, 16 minutes, and 49.6 seconds, or 1.4 seconds shorter than formerly.

Together with a change in the rate of its primary fluctuations, this celestial timepiece has revised its “secondary” period as well, as Mr. Yowell finds that this, too, has changed, increasing by about three seconds in 1925.

What happens inside such a star to make it so suddenly start beating a new rhythm is not known, but it must be explained by some real physical change. Meanwhile, astronomers are searching for other stars whose periods have changed unexpectedly.

DIMINISHING RETURNS OF ASTRONOMY

The law of diminishing returns, so well known by its applications to agriculture and economics, applies to astronomy too, according to Dr. Joel Stebbins, director of Washburn Observatory of the University of Wisconsin.

In his address as retiring president, Dr. Stebbins said that many methods of astronomical observation and research had reached the limit of their practicability, and were fast being replaced by simpler and more effective approaches to the job of finding out what makes stars “tick.”

As telescopes are made larger and larger, there is much less than a proportionate increase in power, and even this is offset by such factors as the enormous size required for mountings and observatories to house the instruments. With the famous 40-inch Yerkes refractor, the practical limit of size for telescopes employing a lens to focus the light has been reached, and that telescope is already nearly 50 years old. The 200-inch telescope, now nearly completed on Mount Palomar in California, will undoubtedly be the largest telescope of any kind for a long time.
NEW WILEY BOOKS

THE ORGANIC CHEMISTRY OF SULFUR
Tetracovalent Sulfur Compounds

By CHESTER M. SUTER, Director of Chemical Research, Winthrop Chemical Company, Inc.

A comprehensive and thorough treatment of the subject. The practical value of compounds is considered, as well as their chemical properties. Methods of preparation are given, and general properties, common reactions and derivatives. The material is well organized, clearly presented. No other book covers the subject in comparable fashion. Ready in November.

Approx. 758 pages; 5½ by 8½; Probable price, $7.50

STATISTICAL ADJUSTMENT OF DATA

By W. EDWARDS DEMING, Head Mathematician, Bureau of the Census.

A practical textbook in statistical adjustment. Different kinds of problems are unified and brought under one general principle and solution—statistical procedures associated with curve fitting and other adjustments by least squares and skeleton table forms for numerical calculations. Suitable for courses in graduate chemistry, physics, sociology, agriculture, or biology. Ready in November.

Approx. 248 pages; 5½ by 8; Probable price, $3.50

GENERAL CHEMISTRY

By H. G. DEMING, Professor of Chemistry, University of Nebraska.

An elementary survey of the subject. It treats the general principles of chemistry somewhat more briefly and simply than does the author’s well-known "Fundamental Chemistry," and gives more attention to the applications of chemistry to modern industry. In the fifth edition the book has been completely rewritten to include the recently developed aspects of the science. Ready in November.

Fifth Edition: Approx. 715 pages; 5½ by 8½; Probable price, $3.50

INTERMEDIATE DIFFERENTIAL EQUATIONS

By EARL D. RAINVILLE, Assistant Professor of Engineering Mathematics, University of Michigan.

This book is designed for use in a course to follow the usual one in elementary differential equations. Emphasis is placed upon development of the student’s technique. The book trains the student in the construction of computable solutions for specific differential equations. Applications to engineering problems are given. An introduction is offered to several topics of importance in the classical theory. Ready in November.

213 pages; 5½ by 8½; $2.75

FUNDAMENTAL RADIO EXPERIMENTS

By ROBERT C. HIGGY, Assistant Professor of Electrical Engineering, The Ohio State University.

Thirty-two basic experiments in electricity, electronics, and radio, with a full explanation of the principles involved, as well as the procedure to be followed in the laboratory. Suggestions on use of equipment, safety, and construction of equipment for the laboratory are included, and a large number of circuit diagrams are given. Published in October.

95 pages; 5½ by 8½; $1.50

JOHN WILEY & SONS, Inc., 440-4th Ave., New York 16, N. Y.
to come, and it may be that no larger such instrument will ever be built.

Disregarding the mechanical problems, the larger a telescope, the greater its light-gathering power, the greater its ability to resolve close points of light, such as double stars, and the greater its magnification (if its focal length increases with its size). But more than offsetting resolution and magnification are the vagaries of the atmosphere, through which all light from sun, moon, and stars must pass. High magnification is used with large instruments only rarely, when "seeing" conditions are perfect. Light-gathering power is the prime purpose in building such an instrument as the 200-inch giant. However, the compensating feature is the comparatively small part of the sky which this telescope will be able to photograph at one time. In reflectors, particularly, the usable field of view is small, which is one of the reasons the newer type of telescope known as the Schmidt camera is so important. It has great light-gathering power combined with a large usable field.

"In astronomy as elsewhere," said Dr. Stebbins, "it is important to look for new methods before a given field is worked out. The modern photoelectric cell and amplifier are a million times as sensitive as similar equipment of a generation ago. But here again the precision with which the light of a star can be measured is limited by the twinkling of the star caused by atmospheric disturbances. An accuracy of one tenth of one per cent. is about the best obtainable at the present time."

With new equipment on the 100-inch telescope at the Mount Wilson Observatory, Dr. Stebbins and his colleagues have secured observations of stars in six colors, compared with previous work in only one or two colors. These studies have been applied to stars, nebulae, and especially to the dark nebulae between the stars. Dr. Stebbins pointed out that a large part of his own work in the past ten years has already become out of date because of improvements by these same investigators in the last year or two.

DISTINCTION BETWEEN PLANET AND STAR

Dr. K. AA. Strand, of Sproul Observatory, Swarthmore College, considers the invisible third component of the triple star 61 Cygni to be of the nature of a planet rather than a star. He believes further that a continuation of the accurate photographic observation of double stars will increase the number of such systems and will reveal stellar masses of such small magnitude that the boundary between planet and star, which has previously seemed clear enough, will disappear.

Two of five such unseen companions which he has discovered have masses about half that of the sun, and one has a mass about one tenth of the sun's; but all three are undoubtedly stars, only they are too faint to be seen.

Of the remainder, one is still somewhat doubtful because sufficient observational material is lacking, but the mass of the fifth one, in the 61 Cygni system, is known accurately as one sixtieth that of the sun, or sixteen times Jupiter's mass. Jupiter is the largest planet in the solar system, its mass equaling that of all the other planets combined.

Dr. Peter van de Kamp, director of the Sproul Observatory, reported on similar results with single stars. In this case, departures from straight-line motion across the sky are discovered by very carefully taken photographs; the departures are caused by invisible companions. Dr. van de Kamp presented a new such discovery—that of a companion to Luyten's star, the companion taking fifteen years to revolve about the visible star.

STAR SPEEDS

Like the molecules of air in a room, heavyweights stars move slowly and lightweight stars move rapidly. Researches by Dr. A. N. Vysotsky, of the Leander McCormick Observatory of the University of Virginia, on the motions and distributions of dwarf stars appear to confirm this hypothesis.

Before a symposium on dwarf stars and planet-like companions, Dr. Vysotsky explained how his selection of the comparatively small or "dwarf" stars was made from the relative intensities of different portions of their spectra, and independently of their apparent motions across the sky. Most other methods of making the selection have been based on such motions, and any attempt to determine the average real motion of such dwarfs as a class was handicapped by their having been selected on the basis of motion in the first place.

It had previously appeared that dwarf stars (mostly of the size of the sun and smaller) had more than their share of energy—that they moved through space too rapidly for their masses if the energy of the galaxy were equally divided. Dr. Vysotsky has slowed the dwarfs down a bit, just enough to make it possible to apply the law of the equipartition of energy, important in physics and thermodynamics, to the majority of the stars in the galaxy.

VELOCITY OF SMALL K STARS

A star moving away from the sun at a speed of 155 miles per second (250 kilometers per second) has been found by Dr. Frank K. Edmondson, of Kirkwood Observatory, University of Indiana. This is a speed of over a half million miles per hour. This star is one of the smaller stars of the universe, of the spectral type called K, which makes it smaller and redder than the sun. In his reporting, Dr. Edmondson stated that his discovery was made in the course of an investigation of the motions of certain selected stars fainter than the tenth magnitude. His work indicates that the small K stars have a wider range in velocity than expected. To account for this, we must suppose that there are a large number of such so-called dwarfs, compared to the giant stars. Previously, the percentage of dwarfs had been supposed to be about 20 per cent. or 30 per cent., but the new results indicate that it may be as high as 80 per cent. Only about half a dozen stars are known with velocities exceeding 155 miles per second (250 kilometers per second).
Acclaimed by Technicians Everywhere

this book presents for the first time, in non-technical language, a comprehensive, easily understood treatment of . . .

THE MICROSCOPE AND ITS USE

Frank D. Munoz, Technical Microscope Consultant
Dr. Harry A. Charipper, Professor of Biology,
N. Y. University

Here is an authoritative guide to aid technicians and students in the practical use of the microscope. Broad in scope, it lists 37 common errors with brief discussions of each. The many subjects covered are Illumination, the Microtome, the Stereoscopic and Polarizing Microscope and other technical aspects.

BOOK REVIEWS REPORT . . .

1. "Every optometrist, optician and laboratory technician who handles the microscope would do well to have this beautifully illustrated manual in his library."
 Optical Journal Review, Aug. 1, 1943

2. "The book is of value to those who wish to learn how to use microscopes as well as to technologists who have had experience with the instrument, but who sometimes encounter difficulties in obtaining the desired results."
 Food Industries, May, 1943

3. "If you read this book you will certainly be impressed with the fact that the authors speak with authority and that they know how to point out essential facts."
 Laboratory Digest

4. "More complete than manufacturers pamphlets, more practical than large textbooks."
 Jour. Amer. Dietary Ass'n, Sept., 1943

5. "The volume can be strongly recommended as likely to be of great value to textile men who are unfamiliar with the technique of microscopy."
 Canadian Textile Journal, Aug., 1943

6. "Answers are given in clear and simple language to most of the questions which arise in the use of simple and specialized microscopes and their attachments."
 American Dyestuff Reporter, Aug. 30, 1943

320 pages, profusely illustrated $2.50 per copy
(Postpaid if cash received with order)

CONTENTS

The Evolution of the Microscope
Antiquity—Names of ancient scientists who participated in its development; development in the 16th, 17th, 18th, 19th & 20th centuries and beginning of modern manufacturers; advent of the electronic microscope.

The Modern Microscope

Illumination

The Microtome
Necessity of the Microtome—Various types—Recommendations of necessary types for Colleges and Hospitals—General information for sectioning of materials—Celloidin Method—Paraffin Method—Rate of Cutting Speed—Frozen Sections—Importance of Proper Care of Microtomes—How to Sharpen Microtome Knives—How to Hone a Knife—Treatment of Stone Surface—How to improve surface of strop when it is too slippery—Trouble Shooting—How to use entire length of knife on a rotary microtome—Razor Blade Holders. A list of difficulties commonly encountered in section cutting.

The Use and Care of the Microscope
General information on preparation of materials. An actual example step by step of the proper use of a compound microscope to examine a specimen. Use of eyeglasses when working with a microscope. How to read a vernier—Drawings and measurements by projection—How to center the condenser—Visualization and special methods—Care of the microscope—Testing objective lenses.

The Stereoscopic Microscope
Where and for what purpose it is generally used. Its construction and parts. Importance of proper alignment of objectives to the binocular body. Illustrated guide for usual magnifications. How to use this type of microscope.

The Metallurgical Microscope

The Polarizing Microscope

Common Errors in the Use of the Microscope

Accessories for Use with the Microscope

Table of Magnifications of Old Objectives and Eyepieces Marked with Old Designations Line Drawing Showing Prism—various types of lenses—focus and focal distance—spherical aberration—image formation—refraction—critical angle.
BIOLOGICAL SYMPOSIA—Volume X
FRONTIERS IN CYTOCHEMISTRY

The Physical and Chemical Organization of the Cytoplasm

Edited by NORMAND L. HOERR
Henry Wilson Payne Professor of Anatomy, School of Medicine, Western Reserve University

Volume X contains a symposium given in honor of Prof. R. R. Bensley of the University of Chicago. These papers have attracted so much attention that it was decided to make it more comprehensive and bring it out as a volume in the "Biological Symposia" series. "Frontiers in Cytochemistry" covers the field of the Physical and Chemical Organization of the Cytoplasm. Most biologists will want this addition to the series.

CONTENTS

Foreword. Normand L. Hoerr.
In Appreciation of Prof. R. R. Bensley. E. V. Cowdry.
The Chemical Structure of Cytoplasm as Investigated in Professor Bensley's Laboratory during the Past Ten Years. Arnold Lazarow.
Some Considerations on the Application of Biological Oxidation-Reduction Reaction Systems to the Study of Cellular Respiration. E. S. Guzman Barron.
Ultracentrifugal Studies on Cytoplasmic Components and Inclusions. H. W. Beams.
Electrolytic Solutions Compatible with the Maintenance of Protoplasmic Structures. Robert Chambers.

Experimental Epidermal Methylenecholanthrene Carcinogenesis in Mice. E. V. Cowdry.
Histochcmical Analysis of Changes in Rhesus Motoneurons after Root Section. Isidore Gersh and David Bodian.
Methods of Isolation of Morphological Constituents of the Liver Cell. Normand L. Hoerr.
Electrolytes in the Cytoplasm. Oliver H. Lowry.
Fibrous Nucleoproteins of Chromatin. A. E. Mirsky and A. W. Polister.
Studies on Macromolecular Particles Endowed with Specific Biological Activity. Kurt G. Stern.
The Chemistry of Cytoplasm. R. R. Bensley.

342 Pages—Price $3.50

PHYSICS TELLS WHY

By OVERTON LUHR

The Book and the Author
The late Professor Luhr was a noted research scientist who gained wide recognition for his work in nuclear physics. Shortly before he died he completed "Physics Tells Why" which will be a monument to his love for his subject. It is a new kind of scientific book, utilising the Socratic method of teaching and is a model of clarity and simplicity. It is a book for the student, the teacher, the curious minded youngster and for the grown-up who is interested in the whys of natural phenomena.

The unique cartoon-style illustrations by Ruth Schmidt add immeasurably to the pleasure of reading this book.

306 pages Many illustrations $3.50

THE JAQUES CATTELL PRESS
Lancaster, Pa.
Klett made ...
Glass Absorption Cells

Fused under high temperature with acid, alkali and other solvent resisting cement. Optical flat walls. Many stock sizes.
Special requirements made to order.
Sole manufacturer in the United States of fused Electrophoresis cells
Makers of complete Electrophoresis Apparatus

Klett Manufacturing Co.
179 East 87th Street, New York, New York

HENRY TROEMNER
The Standard of Excellence for 102 years.
Manufacturer of the highest grade Analytical, Assay and Pulp Balance and Weights of Precision.

Catalog 1929S
911 Arch Street

SPRAGUE - DAWLEY, INC.
Pioneers in development of the standard laboratory rat

Madison, Wisconsin

ALKALOIDS
GLYCOSIDES
AND OTHER PLANT PRINCIPLES
FOR RESEARCH PURPOSES

Complete List on Application

S. B. PENICK & COMPANY
50 Church Street New York 7, N. Y.

LaMOTTE pH RANGE FINDING KIT

A quick means of estimating pH value of unknown substances preliminary to the final test. Saves time and aids in the selection of indicators for accurate work.

Unit consists of 50 ml. LaMotte Range Finding Indicator in dropping bottle, one small testing vial, sampling pipette and pH color chart, with instructions, price $1.50 plus postage.

LaMotte Chemical Products Co.
Dept. "H" Towson-4, Baltimore, Md.
The "Optical Physical" For Fighting Fuels

Today, the American petroleum industry is providing the airmen of the United Nations with the most powerful fighting fuels in the world.

In the production of these, the Bausch & Lomb Precision Refractometer has had an important part. This instrument, developed to meet a definite peacetime need for high precision and dependability, is typical of the many Bausch & Lomb products now performing major roles in the war effort.

Today, the skills in design, computation and craftsmanship that make available such instruments as the Bausch & Lomb Precision Refractometer are also being applied to the instruments of war that make American gunnery so effective. Here again, when Victory is won, Bausch & Lomb will be able to extend its optical service to peace time pursuits because of its wartime accomplishments.
IMPROVED

Eastman High-Resolution Plate

For use in making graticules, and for other purposes requiring the resolution of a fine structure of sharp, dense lines. Resolving power, over 500 lines per millimeter.

THE EASTMAN HIGH-RESOLUTION PLATE, also known as the Eastman Spectroscopic Plate, Type 548, has recently been improved to reduce its susceptibility to staining in development to high contrast.

The plate is now available as Type 548-GH, with a new orthochromatic sensitizing having a maximum sensitivity at about λ5460Å. It will normally be supplied with this orthochromatic sensitizing, and with antihalation backing; other sensitizings may be obtained on special order. Further information will be forwarded upon request.

EASTMAN KODAK COMPANY
Research Laboratories
Rochester, N. Y.

THE AUTOTECHNICON

U. S. Patent No. 2,157,875
and Other Patents Pending.

THE TECHNICON CO.
NEW YORK, N. Y.
It's a microscope that keeps 'em firing

Machine guns fire at the rate of more than 1000 shots a minute. Each shell releases an explosive pressure of more than 40,000 pounds a square inch.

In the thick of action a jammed gun puts the gunner in a tight spot. That's why every link in the cartridge belt must be perfect. Metal too soft will tear, metal too brittle will break.

To control the metallurgical properties of the steel used in the links—to keep 'em firing—is one of the many wartime jobs of Spencer Microscopes and Photomicrographic equipment.

Spencer LENs COMPANY
BUFFALO, NEW YORK
SCIENTIFIC INSTRUMENT DIVISION OF AMERICAN OPTICAL COMPANY