NEW WILEY BOOKS

INDEX FOSSILS OF NORTH AMERICA

By HERVEY W. SHIMER, Professor of Paleontology, Massachusetts Institute of Technology, and ROBERT R. SHROCK, Associate Professor of Geology, Massachusetts Institute of Technology.

A revision of Grabau and Shimer's "North American Index Fossils," published in 1915. Includes all the latest work up to Pearl Harbor, with descriptions and figures of approximately 7,500 species. Published in January.

837 pages; 7½ by 10½; $20.00 (approx.)

THE ORGANIC CHEMISTRY OF SULFUR

By CHESTER M. SUTER, Director of Chemical Research, Winthrop Chemical Co., Inc.

858 pages; 5½ by 8½; $10.00

METEOROLOGY—THEORETICAL AND APPLIED

By E. WENDELL HEWSON, Ph.D., and RICHMOND W. LONGLEY, M.A., Meteorologists in the Meteorological Service of Canada.

The essentials of present-day meteorology, including climatology, map analysis and forecasting procedure, instruments and observations, applications of meteorology to other specialized fields, and, for the first time in any text, the statistical analysis of meteorological data. Published in January.

468 pages; 5½ by 8½; $4.75 (approx.)

QUANTUM CHEMISTRY

By HENRY EYRING, Professor of Chemistry, Princeton University; JOHN E. WALTER, Instructor in Physics, Princeton University; and GEORGE E. KIMBALL, Assistant Professor of Chemistry, Columbia University.

An introductory treatment which includes discussions of the theory of reaction rates, optical activity, molecular structure, spectroscopy, and group theory. Published in January.

394 pages; 5½ by 8½; $5.00

THE CHEMISTRY OF CELLULOSE

By EMIL HEUSER, The Institute of Paper Chemistry.

A study of the scientific aspects of the subject, useful both to the practicing chemist in industrial and other research laboratories and to the student specializing in cellulose chemistry. Published in January.

660 pages; 5½ by 8½; $7.50 (approx.)

JOHN WILEY & SONS, Inc.

440 Fourth Avenue
New York 16, N. Y.
LONG-RANGE WEATHER FORECASTS

Long-range weather forecasts, a peace-time dream that seemed unrealizable, have become a working actuality because fighting men, especially winged fighting men, simply had to have them. Pictures of what the weather will be like at the end of two days, 10 days, 30 days are now possible, "with sufficient accuracy to permit of making preparatory plans for future operations," is stated by General H. H. Arnold, in command of the Army Air Forces, in his report to Secretary of War Stimson.

At the beginning of the war, 48-hour forecasts were common enough. But that little time is insufficient margin when plans for a continental-scale invasion of hostile shores are being made. Insistence on working long-range forecasts "at first met considerable opposition both inside and outside the Army Air Forces," General Arnold comments. By pooling all meteorological information of the United Nations, together with some further knowledge captured from German sources, the job was done, and put on a world-wide scale.

Forecasting weather for the Army Air Forces is often as perilous a job as flying through that weather at its worst. The story is told of one group of meteorologists who undertook to set up an observing station on a narrow ledge in an ice-jammed fjord at Prince Christian Sound on the desolate, uninhabited southern coast of Greenland. The buildings have to be tied down to the rocks with cables, to keep from being blown off by the winds of 90- to 175-mile-an-hour that prevail there.

There has been a tremendous increase in Air Weather Service, as in all other branches of the fighting forces. For this particular work, the personnel has been multiplied ninety-fold.

INFLUENZA

Those who have been worrying, as most persons have each fall and winter since the war started, over the possibility of a world-wide influenza epidemic as devastating as that of 1918, may be reassured by a statement by the editors of the New England Journal of Medicine. It states that any epidemic in the near future is likely to be much less severe than was the pandemic of 1918. This, of course, is only speculation, but is based on significant observations. The observations are:

1. The influenza of the last war had a high mortality, but the deaths were accounted chiefly for complicating pneumonias in which the hemolytic streptococcus was the germ most frequently encountered. The same was true of the epidemics of measles in Army camps during the last war.

2. During the 1940-1941 epidemic of influenza, the staphylococcus played an important role in complicating pneumonias, but intensive treatment with the sulfa drugs gave quite encouraging results. The results, in fact, were so good that it was suggested that in the event of another influenza epidemic it might be well to use sulfa drugs early in severe cases. This is especially recommended for patients with severe prostration, signs of tracheobronchial and lung involvement and presence of appreciable numbers of hemolytic streptococci and staphylococci in the sputum.

3. Another encouraging omen comes from recent reports concerning measles. Outbreaks of this occurred in the Army during 1943 but, unlike the 1918 experience, deaths were rare. This is attributed to wide-spread use of sulfa drugs in all cases with lung involvement.

"It is not unreasonable," the medical authorities comment, "to expect a similar low fatality rate from influenza occurring under like circumstances."

For the future, there is even more reason for confidence when supplies of penicillin become large enough for large-scale use, since this chemical from mold is especially efficacious in infections with the staphylococcus. This germ is being found in increased frequency in surgical conditions and in complications of other respiratory diseases, so may be expected to play a considerably greater role in future influenza epidemics than in any previous ones.

PURE TUNGSTEN OBTAINED DIRECT FROM ORES

Pure tungsten, much used in war metals, may be produced directly from tungsten ore by a new method successful, at least, in the laboratory. The new process, in which crystalline tungsten is produced electrolytically from a fused borate or phosphate bath, using tungsten ore as the direct source of tungsten, was developed by Dr. Colin G. Fink, of Columbia University, and Chuk Ching Ma, of the Westinghouse Lamp Company, Bloomfield, N. J., and reported by them to the Electrochemical Society.

In the process the tungsten in the ore used does not require preliminary transformation into alkali tungstate as in older processes. The new method may be applied to low-grade ores as well as to high-grade or concentrates ores. The method is technical, but is commercially usable and economical.

Tungsten to-day occupies a major position among strategic minerals. Few metals have so rapidly increased in importance within the past twenty years. It is used as a pure metal, as an alloy constituent in hard steels and other metals, and in chemical compounds. Tungsten is used in high-speed tool steels and in cemented carbides. Tungsten carbide tools, used in thousands of machine shops producing war equipment, have extreme hardness, being surpassed only by boron carbide and diamonds. Tungsten is used for filaments in incandescent electric lamps, as electrodes for hydrogen welding, electric contacts in automobile engines, and has many other uses.

This metal has a fortunate combination of physical properties. These include tensile strength, hardness, ductility, corrosion and erosion resistance, and a very high melting point, 3,370 degrees Centigrade, the highest of any metal.
Plastics Will Mean Better Homes

...and more of them!

Even today, plastics men can vision a bathroom with practically everything in it made of plastics or containing plastics in some form. Imagine such a bathroom, costing less to manufacture, to ship, and to install, delivered as a unit to your home!

The raw materials to make better homes with more bathrooms and finer kitchens come true are in existence today...in VINYLITE and BAKELITE resins, and plastics made from them.

BAKELITE resin-bonded plywood, like that from which planes and torpedo boats are made, can be used to make floors, walls, ceilings, and furniture.

The type of plastic film used in waterproof, chemical-resistant food bags and pipe covers can be fabricated into mildew-proof shower curtains. VINYLITE resins can also be made into rot-resistant floor coverings that can be walked on millions of times without showing appreciable wear!

Our engineers know from the record of VINYLITE plastic-coated life raft sails, sleeping bags, and life preservers, that VINYLITE plastics and compounds can be used in the future to bring you wall coverings, window curtains, and furniture finishes that will outlast anything now available.

Under heat and pressure, VINYLITE and BAKELITE plastics can be molded into numberless useful forms. Experience gained in molding war equipment will help to bring you such things as molded plastic furniture which will be lighter, easier to move, easier to keep clean.

Spun plastics made from vinyl resins are resistant to rot. Right now, such plastics are used for making jungle hammock ropes and vital chemical filters. They also can be fashioned into draperies, upholstery, stockings, and other articles of clothing—sun-proof, water-proof, and moth-proof!

VINYLITE and BAKELITE resins and plastics, and many new techniques for using them, are peacetime research achievements of CARBIDE AND CARBON CHEMICALS CORPORATION and BAKELITE CORPORATION, both Units of UCC. Fabricators converting these raw materials into finished articles are making them mean more and more to you.

GREATER SAFETY! Improved electrical wiring insulation that will not support flame can be made from several VINYLITE plastic compounds. Such wiring, now employed in vital circuits of warships, will some day provide greater safety in the home.

MORE BEAUTY! New washable water paints, based on BAKELITE resins, will bring new beauty to homes. These paints are inexpensive...and easy to apply!

LESS EXPENSE! Use of BAKELITE molding plastics in making washing machines, refrigerators and many other household devices and fixtures can mean lower-priced, longer-lasting equipment for you.

LESS WORK! Easier cleaning of plastic-treated walls, ceilings, and floors. Plastic furniture and upholstery that are easier to keep clean. Yours in the future!

BUY UNITED STATES WAR BONDS AND STAMPS

Union Carbide and Carbon Corporation
30 East 42nd Street New York 17, N.Y.
Principal Products and Units in the United States

Alloys and Metals:
Electro Metallurgical Company
Haynes Stellite Company
United States Vanadium Corporation

Chemicals:
Carbide and Carbon Chemicals Corporation

Electrodes, Carbons & Batteries:
National Carbon Company, Inc.

Industrial Gases and Carbide:
The Linde Air Products Company
The Oxweld Railroad Service Company

Plastics:
BAKELITE Corporation
Plastics Division of Carbide and Carbon Chemicals Corporation
The United States mines tungsten ores in Arizona, California, New Mexico, Colorado, Idaho, Nevada, Montana, and Washington. Its principal supply has been imported. In 1940, China furnished 46 per cent. of the imports, Bolivia 20 per cent., Argentina 10 per cent., and Australia and Portugal 6 per cent. each. With much of the China ore no longer available steps have been taken to secure increased amounts, particularly from Bolivia and from local reserves. The new process, in which low-grade ores may be used, will undoubtedly increase the use of local minerals.

ORGANIC CHEMICALS FROM COAL

Organic chemicals, now extracted principally from petroleum, will probably be derived more largely from coal in post-war days as the oil reserves become more and more exhausted. The extraction of simple individual chemicals from coal is a difficult process at present because of its highly complex composition. Intensive studies at the Coal Research Laboratory of the Carnegie Institute of Technology in Pittsburgh may result in methods to make the process more simple and economical.

Chemicals are obtained from petroleum by relatively simple processes because the crude oil secured from the earth consists of many individual compounds easily separated and processed. They are now obtained from coal principally as a coke by-product. This by-product is a mixture of aromatic compounds called coal-tar. Coke and gas are the objects of the coking process; the coal-tar is incidental, and normally only about half of it is used to obtain pure chemicals.

As a wartime measure all the coal-tar products are now used, mostly to obtain the essential toluene for TNT, benzene for aviation fuel, and styrene for synthetic rubber. The plastics industry also is a consumer of coal-tar compounds.

Production of coal-tar now is dependent on the amount of coke needed in the trade. The steel industry is the principal user of coke. To increase the output of coke and coal-tar, additional uses of coke must be found either as a fuel, or to furnish pure carbon for many commercial purposes. Coke is principally carbon. Present studies are concerned with how coal-chemicals production can be economically separated from coke production.

ITEMS

Two stars have been found to compose AE Aquarii, a faint star in the constellation of the Water Carrier, where only one was believed to exist before. This star is of the eleventh magnitude and therefore invisible to the naked eye. Examination of photographs of the star by Dr. A. H. Joy, of the Mt. Wilson Observatory, revealed the presence of a close companion revolving around the main star, with a period of less than two days. This is the first time that the binary character of these particular stars has ever been recognized. The photographs also show the presence of bright clouds of hydrogen, helium and calcium gas surrounding one or possibly both of the stars. Seven photographs of the spectrum taken during September and October of this year were studied by Dr. Joy. His work introduces a new line of attack in the study of certain variable stars that in their sudden outbursts of luminosity resemble novae.

Cold winter winds spell doom for potential attackers of stored grain is reported by the U. S. Department of Agriculture. Few insect eggs or other forms of insect life, enemies of the granary, can survive low winter temperatures. And, as grain is an excellent insulator, even the summer heat takes a long time in making its way into the main body of the grain. The autumn chill usually arrives before any harm can be done. To make the most of this natural refrigeration, painting the outer surfaces of granaries and grain tanks white in order to reflect the sunlight and absorb a minimum of heat is recommended. Mild winters in the South make the problem much more difficult in that area. Granary enemies must be attacked in the balmy climates by means of fumigation, oiling or heating.

To assist harried South American farmers who are losing as much as 50 per cent. of their corn crop because of insects, but are unable to obtain fumigants to combat them, a new method of attacking by heat is under investigation by the Institute of Inter-American Affairs at Iowa State College. Now being developed by Paul Douglas, associate engineer of the food supply division of the institute, the solution to this problem calls for the construction of a brick storage building, fourteen feet high and six feet wide, in which can be stored 160 bushels of shelled corn, the harvest from about ten acres. Through the center of this building, a wood furnace and flue are built to furnish the temperature of 120 degrees Fahrenheit which is needed to kill the pests. Detailed plans for the structure, method of operation, handling of the corn at harvest, preliminary drying for storage and determination of moisture content are expected by Mr. Douglas to be available for the South American farmers upon completion of the present research project.

Rats are saboteurs of the most destructive sort, it appears from figures compiled by biologists of the U. S. Fish and Wildlife Service. The damage they caused last year is estimated at more than $200,000,000. Rat damage went up during 1943 not so much because there were more rats as because the cost of commodities in general had increased. Higher cost of living means higher cost of keeping rats on the premises. Men experienced in rat control estimate the over-all rat population of American farms at around 60,000,000. The farm is the rat's stronghold with plenty of hideouts and plenty of food he can steal. Cities harbor fewer of the vermin: improved ratproof construction, better clean-up of garbage and the vanishing of the city horse are cited as factors in the rats' back-to-the-farm movement. In addition to their role of thieves, rats are incendiaries. They steal matches, gnaw wire insulation, cause leakage of chemicals. Worse still, these vermin harbor smaller vermin (flies) which in turn are carriers of two much-feared diseases: the American form of typhus fever and bubonic plague.
BEGINNING with Pyrex brand Laboratory Glassware in 1915, Corning Research has kept pace with the growth of the modern laboratory by developing new lines of glassware to meet each new laboratory need. Today there are five separate lines meeting every laboratory requirement.

1. Pyrex brand Laboratory Glassware
THE ALL-AROUND WARE FOR ALL-AROUND USE
Fabricated from “Pyrex” Chemical Glass No. 774—“Pyrex” Ware combines the essential properties of chemical stability, mechanical strength and heat resistance, scientifically balanced—the standard glassware for general laboratory use.

2. Pyrex brand Lifetime Red Low Actinic Glassware
FOR LIGHT-SENSITIVE SUBSTANCES
This colored glassware affords high protective value. Fabricated from “Pyrex” Chemical Glass No. 774, its LIFETIME RED color is an integral part of the glass. Mechanical strength, chemical stability and heat resistance are combined with ability to retard deterioration from light influence.

The following data will serve as a guide to its efficiency:

<table>
<thead>
<tr>
<th>Approximate percent wavelength transmission in Angstrom units of “Pyrex” Low Actinic Ware</th>
<th>3000 Angstroms</th>
<th>4000 Angstroms</th>
<th>5000 Angstroms</th>
<th>6000 Angstroms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0%</td>
<td>1%</td>
<td>4%</td>
<td>12%</td>
</tr>
</tbody>
</table>

3. Pyrex brand Fritted Ware FOR SPEED, RETENTIVITY AND FREEDOM FROM CHEMICAL REACTION
Glass particles are fritted to form discs which are sealed into non-porous bodies—both of “Pyrex” Chemical Glass No. 774. With five porosities available—from ultra fine to extra coarse—filtration of various types of precipitates can be accomplished at maximum speed. Discs are mechanically strong, thermally and chemically resistant.

4. Vycor brand Glassware
FOR HIGH TEMPERATURE REACTIONS, RAPID ANALYSIS
Fabricated from 96% Silica Glass No. 790, this ware possesses exceptional chemical stability, has a high softening point and extremely low coefficient of expansion.

5. Corning brand Alkali-Resistant Glassware
FOR BORON DETERMINATIONS AND SIMILAR APPLICATIONS
Designed specifically for use where resistance to alkalis is important. Fabricated from “Corning” Alkali-Resistant Glass No. 728—substantially boron-free (approx. B$_2$O$_3$ Content, 0.06%).

For complete information on these five lines of glassware consult Catalog LP21 and Supplements.
INTERNATIONAL
MINOT ROTARY MICROTOME

For the *speedy serial sectioning* of paraffin embedded specimens, the International Microtome is to be preferred. It is a precision instrument retaining all the desirable and simple features of the original Minot Model which make for fast, accurate cutting.

The automatic feeding mechanism has two styles of notched wheels, one for 2 microns per notch and the other for 3½ microns per notch. The 8 step index head permits 2 to 16 microns with the 2 micron click wheel and from 3½ to 26½ microns with the 3½ micron click wheel. A ball-and-socket clamp with single coarse thread makes possible rapid adjustment of specimen holder.

The simplicity of the International Minot Rotary Microtome affords both speed and accuracy which accounts for the fact that owners of instruments bought in 1914 are still enthusiastic users today.

—Send for Bulletin M—

INTERNATIONAL EQUIPMENT COMPANY

352 Western Avenue

Boston, Mass.

THE AUTOTECHNICON

U. S. Patent No. 2,157,875
and Other Patents Pending.

THE TECHNICON CO.
NEW YORK, N. Y.
A constance of 1°C. and a uniformity of 1°C. under full load conditions. Exceeds tolerance of 1°C. recommended by American Public Health Association.

Because heat is transmitted by interior radiation rather than by convection, variation throughout chamber is minimized. A single thermometer suffices for accurate temperature measurements.

Heat lost by opening of door is quickly compensated for by large heat reserve provided by 22 gallons of accurately controlled warm water.

Available in sizes for all bacteriological applications. Modern No. 554 (Illustrated) is particularly recommended for milk analysis by agar plate method.

Write for complete details.

WILMOT CASTLE COMPANY
1212 University Ave. • Rochester, N. Y.
How Americans Are Kept in Fighting Trim

On some South Pacific island, in Africa, or on our northern battlefronts... wherever there is a force of American soldiers... you find a medical officer equipped with a microscope.

Bausch & Lomb Microscopes follow the flag, over land and sea, to help keep your fighting sons in fighting trim. Medical research... and the routine check-ups and analyses that must be done in the field... are a vital part of military preventive medicine. Through the microscope the Medical Corps knows of the enemies... disease and infection... that lurk behind every battleline.

That is why, in the Bausch & Lomb plant, you will still find microscopes being made... thousands of them... for microscopes have become an essential to American fighting forces as have the gunfire control instruments, binoculars and aerial photographic lenses which Bausch & Lomb also manufactures.

Microscopes are typical of the many Bausch & Lomb optical instruments that are performing vital war duty on the home front... in the industrial research and control that speed the production of the tools of Victory... and in the medical and scientific research that will make it a better world to which these boys will return. Here again optical science is seeing it through.

For Bausch & Lomb Instruments essential to Victory—priorities govern delivery schedules.

BAUSCH & LOMB
OPTICAL CO. • ROCHESTER, N.Y.
ESTABLISHED 1853

AN AMERICAN SCIENTIFIC INSTITUTION PRODUCING OPTICAL GLASS AND INSTRUMENTS FOR MILITARY USE, EDUCATION, RESEARCH, INDUSTRY AND EYESIGHT CORRECTION
PLATES AND FILMS
for Spectrum Analysis

THE Eastman Kodak Company makes a number of plates and films which are suited to the various requirements of spectrum analysis. One of the most recent of these products is Eastman Spectrum Analysis Film, No. 2. It has good speed, moderate contrast, and medium resolving power and granularity. Its contrast and wave length characteristics are very uniform throughout the spectral region \(\lambda 2400A - \lambda 4400A \).

Particulars concerning this and other films and plates for spectrum analysis will be forwarded promptly upon request.

EASTMAN KODAK COMPANY
Research Laboratories
Rochester, N. Y.
The War ... and the Physicist

In today's global war, the physicist has a role of far greater importance than in any other conflict since the dawn of history.

The electronic principles employed against submarines; the new radio devices which help to locate and destroy enemy aircraft and shipping; the mechanical, thermal and optical principles involved in bombing and defense against bombing — these are but a few of the developments which reflect the skills of the physicist.

All Spencer optical instruments are products of physical science. Today they include instruments for control of gunfire, for observation, for navigation ... in addition to microscopes and other standard peacetime instruments being produced in unprecedented numbers for the Armed Forces.

Optical instruments are so vital to war and public health that the nation's needs absorb practically all of Spencer's greatly increased production.

Spencer LENSMAN COMPANY
BUFFALO, NEW YORK
SCIENTIFIC INSTRUMENT DIVISION OF AMERICAN OPTICAL COMPANY