HOFFMAN'S
FEMALE ENDOCRINIOLOGY

Including Sections on the Male This new book will be of special interest to the prac-
ticing physician, the specialist, the research man, the
physiologist and all others concerned with the endocrine glands, their behavior and the modern
methods of diagnosing and treating their diseases and malfunctions.

Dr. Hoffman studied under Robert Meyer; he has been associated with Aschheim and Zondek in many
of their investigations; and has had an unusual experience in both the clinic and laboratory. His
book is a reflection of this vast experience.

The book is divided into three parts—Part I on Physiology; Part II on Clinical Aspects, including
diagnosis and treatment; and Part III on Laboratory Procedures. Full information is given on
endocrine products and there are nearly 200 illustrations, some in colors, which, in the words of
an authority, constitute "the finest group ever assembled for any book on the subject."

By Jacob Hoffman, M.D., Demonstrator in Gynecology, Jefferson Medical College, and Pathologist in Gynecology, Jefferson
Hospital. 788 pages, 6½" x 9¼", illustrated. $10.00

Heilbrunn's
General Physiology

New (2nd) Edition—This book is a scholarly
and logical presentation of general physiology.
It was written with the special needs of the
student uppermost in mind, and is notable for
the great clarity with which each subject is
discussed. A complete revision has brought
the text thoroughly in line with present-day
thought and literature.

By L. V. Heilbrunn, Professor of Zoology in the University
of Pennsylvania. 748 pages, 6½" x 9¼", 135 illustrations.
$6.00

Heisig's Semimicro
Qualitative Analysis

Dr. Heisig begins his text with a practical
consideration of the theoretical aspects of the
subject, then leads into a full discussion of
the experimental side, dividing this section
into two parts, one on Cations, the other on
Anions. A very complete Appendix with sug-
gested references and other useful information,
is included.

By G. B. Heisig, Ph.D., Associate Professor of Inorganic
Chemistry, University of Minnesota, Minneapolis. 331
pages, 5½" x 8½", illustrated. $2.50

Official U.S. Public Health Service Manual of Industrial Hygiene

This official manual is a most timely one, both for those actually confronted with the many in-
dustrial health problems and for those taking industrial hygiene courses. The coverage is extensive,
yet material is concisely presented. Of greatest importance is the authority of this manual—it
is the experience and the methods of the U. S. Public Health Service.

Issued under the Auspices of the Committee on Industrial Medicine of the Division of Medical Sciences of the National
Research Council. Prepared by the Division of Industrial Hygiene, National Institute of Health, U. S. Public Health
Service. William M. Gafan, Editor. 508 pages, 6½" x 9¼", illustrated. $3.00

W. B. SAUNDERS COMPANY
West Washington Square Philadelphia 5

Science: published weekly by The Science Press, Lancaster, Pa.
Entered as second-class matter July 16, 1853, at the Post Office at Lancaster, Pa., under the Act of March 3, 1879.
SCIENCE—ADVERTISEMENTS

C&B Laboratory Reagents

Inorganic and Organic Chemicals
• Biological Stains
• Solutions
• Chemical Indicators
• Test Papers

Write for copy of our catalog

The COLEMAN & BELL Co.
Manufacturing Chemists: Norwood, O., U.S.A.

COLEMAN & BELL

RESEARCH CHEMICALS

Bile acids, hormones, and special biochemical products are available for research purposes. Send for our latest price list.

George A. Breon & Company
Synthetic Chemicals Division
Box 769, Kansas City 10, Mo.

Linde RARE GASES AND MIXTURES

... Spectroscopically Pure
... Easily removed from bulb without contamination

Scientific uses for Linde rare gases include—
1. The study of electrical discharges.
2. Work with rectifying and stroboscopic devices.
3. Metallurgical research.
4. Work with inert atmospheres, where heat conduction must be increased or decreased.

Many standard mixtures are available. Special mixtures for experimental purposes can be supplied upon request.

The word “Linde” is a trade-mark of

THE LINDE AIR PRODUCTS COMPANY
Unit of Union Carbide and Carbon Corporation
30 E. 42nd St., New York U.S.A. Offices in Principal Cities
In Canada: Dominion Oxygen Company, Ltd., Toronto

S&ESCHLEICHER & SCHUELL CO.

Plant and Lab: South Lee, Mass.
Head Office: 116-118 West 14th St.
New York 11, N. Y.

Bacto-Agar

Bacto-Agar is a purified Agar prepared from domestic material. In the manufacture of Bacto-Agar extraneous matter, pigmented portions, and salts are reduced to a minimum, so that the finished product in the form of fine granules will dissolve rapidly, giving clear solutions.

Bacto-Agar is distributed only for use in bacteriological culture media upon proper certification by the purchaser.

Bacto-Asparagine

Bacto-Asparagine is a purified amino acid widely used in synthetic culture media and in the preparation of tuberculin.

Specify “DIFCO”

THE TRADE NAME OF THE PIONEERS
In the Research and Development of Bacto-Peptone and Dehydrated Culture Media.

DIFCO LABORATORIES INCORPORATED DETROIT, MICHIGAN
Choline Chloride, Cystine and Methionine, prepared in the Research Laboratories of S. M. A. Corporation, are available to the laboratory investigator in these convenient amounts.

CHOLINE CHLORIDE
- 25 gram bottle $1.75
- 100 gram bottle 4.65
- 1000 gram bottle 35.00

1-CYSTINE
- 10 gram bottle $1.00
- 100 gram bottle 7.50
- 1 pound bottle 15.50

d1-METHIONINE
- 1 gram bottle $1.00
- 10 gram bottle 9.00
- 100 gram bottle 60.00

For quotations on larger quantities, write Research Laboratories, S. M. A. Corporation, Chagrin Falls, Ohio.

Research Laboratories
S. M. A. CORPORATION
Wyn~th INCORPORATED
Sealed in this box and deposited in the vaults of the Bell Telephone Laboratories is a special device that helped win a great battle. It is being preserved for its historical significance.

Such things do not just happen. New instruments of war may appear suddenly on the battle-fronts. But behind them are long years of patient preparation.

Our scientists were organized to have this device ready for battle—just as our fighting forces were organized to be ready for that battle.

Developing secret military devices is a big job but big forces are busy on it, day and night.

Concentrating on this job are more than 7000 people in the Bell Telephone Laboratories. Its scientists and engineers and their skilled associates form a highly organized team, experienced in working things out.

Today's work for war had its beginning many years ago when these laboratories were founded as part of the Bell System's service to the public.
A boy in his father’s spectacle-making shop around 1610... two lenses and a tube... the result: the accidental discovery of the first compound microscope. Thus, does history record Zacharias Jansen’s claim to fame.

Denied the honor of being discoverer of the telescope by the weight of evidence, his claim in the microscope controversy seems to be stronger than that of Galileo, his leading competitor.

One of Jansen’s microscopes, presented to Austrian Archduke Albert, then supreme governor of Holland, has been variously described as six feet, two and a half feet, and one and one half feet long... a tube of gilded brass supported by three dolphins... an ebony disc at the base on which minute objects were inspected from above.

Today, 334 years after Jansen’s discovery, other men of vision are viewing minute objects and charting new courses in other lines of optical endeavor... using new lenses and prisms to fathom the depths of Nature’s secrets. With these men in industry, education and the armed forces, Perkin-Elmer has been happy to work and plan... helping write new pages in optical history.

WHAT PERKIN-ELMER HAS DONE FOR OTHERS, IT CAN DO FOR YOU

PROBLEM: To prevent parallax from causing untrue readings on barometers.

SOLUTION: Perkin-Elmer engineered a special optical system which made every reading absolutely correct from every angle of vision.

If you’re looking for an optical answer to a question of analysis, control or inspection... if you need a specific device for a known function, Perkin-Elmer can probably help you. Here, optical engineers, with a tradition of accuracy measured in millionths of an inch or of a circle, bow to none in ability to make custom-built instruments of the highest quality.
MEDICINE SLIDES

Series MT - - Tropical Diseases

A series of approximately 150 2 x 2" (35 mm) Kodachrome transparencies (lantern slides) made with the cooperation of Dr. Henry E. Meloney, Dr. Harry Most, and Dr. Dominic DeGiusti, Department of Preventive Medicine, New York University College of Medicine. Slides Nos. MT45, 46, 47 are from the Army Medical Museum, Washington, D. C.

The following slides are ready:

<table>
<thead>
<tr>
<th>MT</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT 1</td>
<td>Yellow Fever — Liver lobule showing mid-zonal necrosis H&E x 100-200</td>
</tr>
<tr>
<td>MT 6</td>
<td>Plague — exudate in alveoli H&E x 500</td>
</tr>
<tr>
<td>MT 8</td>
<td>Plague bacilli in smear of spleen x 1200</td>
</tr>
<tr>
<td>MT 10</td>
<td>Bacillary dysentery — smear of exudate in stool. Iron Htx x 500</td>
</tr>
<tr>
<td>MT 25</td>
<td>Relapsing fever — spirochaetes smear of blood — giemsa x 1000</td>
</tr>
<tr>
<td>MT 30</td>
<td>Histoplasmosis — section of lung, liver or smear showing Histoplasma in macrophages H&E x 1000</td>
</tr>
<tr>
<td>MT 30a</td>
<td>Histoplasmosis — smear in blood</td>
</tr>
<tr>
<td>MT 39</td>
<td>Actinomycosis — section of lung showing rays H&E x 1000</td>
</tr>
<tr>
<td>MT 40</td>
<td>Rhinosporidium seeberi, nasal polyp</td>
</tr>
<tr>
<td>MT 45</td>
<td>Plasmodium vivax, life history from drawings</td>
</tr>
<tr>
<td>MT 46</td>
<td>" malariae " " " "</td>
</tr>
<tr>
<td>MT 47</td>
<td>" falciparum " " "</td>
</tr>
<tr>
<td>MT 56</td>
<td>Malaria — section of brain P. falciparum — capillaries, l. p. H&E x 500</td>
</tr>
<tr>
<td>MT 56a</td>
<td>Malaria — section of brain P. falciparum — capillaries, h. p. x 1200</td>
</tr>
<tr>
<td>MT 58</td>
<td>Malaria — oocysts Htx x 1200</td>
</tr>
<tr>
<td>MT 60</td>
<td>" — sporozoites giemsa x 1000</td>
</tr>
<tr>
<td>MT 65</td>
<td>African trypanosomiasis — section of brain — perivascular infiltration H&E x 100</td>
</tr>
<tr>
<td>MT 78</td>
<td>Trypanosoma lewisi — blood of rat — smear giemsa x 1000</td>
</tr>
<tr>
<td>MT 80</td>
<td>T. cruci — smear of culture — giemsa x 1000</td>
</tr>
<tr>
<td>MT 80a</td>
<td>T. crusi in muscle</td>
</tr>
<tr>
<td>MT 85</td>
<td>Leishmaniasis — L. donovani — section of liver A. Azar H&E x 1000</td>
</tr>
<tr>
<td>MT 88</td>
<td>Leishmaniasis — L. donovani — smear of bone marrow, giemsa x 1000</td>
</tr>
<tr>
<td>MT 88a</td>
<td>Leishmaniasis — L. donovani — blood smear x 1000</td>
</tr>
<tr>
<td>MT 92a</td>
<td>Leishmaniasis — L. tropica plate culture</td>
</tr>
<tr>
<td>MT 105</td>
<td>E. histolytica — abscess of liver H&E x 100 or less</td>
</tr>
<tr>
<td>MT 107</td>
<td>E. histolytica — ulcer of skin low power H&E x 50</td>
</tr>
<tr>
<td>MT 107.1</td>
<td>E. histolytica — invading skin x 100</td>
</tr>
<tr>
<td>MT 107.2</td>
<td>" in lung x 300</td>
</tr>
<tr>
<td>MT 107a</td>
<td>" " " " x 60</td>
</tr>
<tr>
<td>MT 107b</td>
<td>" " — invading fat (skin)</td>
</tr>
<tr>
<td>MT 109a</td>
<td>" " — miliary smear faces — iron Htx H&E x 1000 or 500</td>
</tr>
<tr>
<td>MT 127</td>
<td>Bacillary dysentery, section of colon H&E x 10</td>
</tr>
<tr>
<td>MT 130</td>
<td>Wuchereria bancrofti — Microfilaria in blood Htx x 500</td>
</tr>
<tr>
<td>MT 131</td>
<td>Wuchereria malayi — microfilaria in blood x 400</td>
</tr>
<tr>
<td>MT 132</td>
<td>Wuchereria bancrofti — section of lymphnode with gravid female H&E x 100</td>
</tr>
<tr>
<td>MT 138</td>
<td>Onchocerca volvulus — section of nodule H&E x 40</td>
</tr>
<tr>
<td>MT 138a</td>
<td>Onchocerca volvulus — section of nodule H&E x 200</td>
</tr>
<tr>
<td>MT 140</td>
<td>Mansonella ozzardi — larva in blood Htx x 500</td>
</tr>
<tr>
<td>MT 142</td>
<td>Acanthocheilonema perstans — larva in blood Htx x 500</td>
</tr>
<tr>
<td>MT 156a</td>
<td>Schistosomiasis — abscess of submucosa evacuating through gland H&E x 60</td>
</tr>
<tr>
<td>MT 164</td>
<td>S. Japonicum — eggs in brain H&E x 100</td>
</tr>
<tr>
<td>MT 164a</td>
<td>" — adults whole mount, copulating x 5</td>
</tr>
<tr>
<td>MT 164b</td>
<td>S. Japonicum — snails</td>
</tr>
<tr>
<td>MT 168</td>
<td>" mansoni — snail x 10</td>
</tr>
<tr>
<td>MT 169</td>
<td>" " — adults in mesenteric vessels x 1</td>
</tr>
<tr>
<td>MT 170</td>
<td>" " — adults, c. s. in rabbit intestine</td>
</tr>
<tr>
<td>MT 170a</td>
<td>" " — young worms in liver</td>
</tr>
<tr>
<td>MT 170b</td>
<td>" " — adults, c. s. in liver</td>
</tr>
<tr>
<td>MT 173</td>
<td>Clonorchiasis — worms in bile duct H&E x 10</td>
</tr>
<tr>
<td>MT 173a</td>
<td>Clonorchis sinensis — whole mount</td>
</tr>
<tr>
<td>MT 179a</td>
<td>Paragonimiasis — whole mount</td>
</tr>
<tr>
<td>MT 179b</td>
<td>" " — P. westermani in lung, c. s.</td>
</tr>
<tr>
<td>MT 180</td>
<td>" " — eggs in abscess of testis H&E x 65</td>
</tr>
<tr>
<td>MT 180a</td>
<td>Paragonimiasis — single egg in abscess of testis H&E x 500</td>
</tr>
<tr>
<td>MT 181</td>
<td>Fasciolopsis buski, whole mount x 1</td>
</tr>
<tr>
<td>MT 182</td>
<td>Fasciola hepatica, whole mount x 1</td>
</tr>
<tr>
<td>MT 183</td>
<td>" " c. s. in liver x 5</td>
</tr>
<tr>
<td>MT 188a</td>
<td>Trichinosis — Trichinella, encysted in muscle</td>
</tr>
<tr>
<td>MT 189</td>
<td>Cercariae — straight tailed x 125</td>
</tr>
<tr>
<td>MT 198</td>
<td>Trichinosis — larvae in brain section with nodule H&E x 100</td>
</tr>
<tr>
<td>MT 212</td>
<td>Cestodes — Taenia saginata segment; injected x 1—2</td>
</tr>
<tr>
<td>MT 212a</td>
<td>Cestodes — Taenia saginata — segment in appendix</td>
</tr>
<tr>
<td>MT 212b</td>
<td>Cestodes — Taenia saginata — four continuous sections, injected</td>
</tr>
<tr>
<td>MT 214</td>
<td>Cestodes — T. solium head x 10</td>
</tr>
<tr>
<td>MT 216</td>
<td>" " " segment stained x 1—2</td>
</tr>
<tr>
<td>MT 218</td>
<td>" " " section of cysticercus in brain H&E x 5</td>
</tr>
<tr>
<td>MT 227</td>
<td>Cestodes — Diphyllolobothrium latum segment x 1—2</td>
</tr>
<tr>
<td>MT 237</td>
<td>Cestodes — Section of cyst wall with brood capsule and scoleces H&E x 40</td>
</tr>
<tr>
<td>MT 266</td>
<td>Plea — Xenopsylla cheopis, male</td>
</tr>
<tr>
<td>MT 267</td>
<td>" " " female</td>
</tr>
<tr>
<td>MT 270a</td>
<td>Lice — Pediculus humanus, female</td>
</tr>
<tr>
<td>MT 310</td>
<td>Cimex lectularius</td>
</tr>
<tr>
<td>MT 315</td>
<td>Tsetse fly wing</td>
</tr>
</tbody>
</table>

$.90 each in Adams Slide Binders
$.80 each in Kodak Readymounts

Write for complete listing MT
THE TECHNICAL KNOWLEDGE, the ingenuity and the resources of America are at the disposal of our skilled medical officers on the fighting fronts of the world. They command every aid the nation can supply. That is one reason why a wounded man’s chances of survival are greater today than they have been in any other war.

Among the materials that are helping medical men in their fight to save lives are the stainless steels. Used in operating tables, surgical instruments and in other medical equipment, stainless steels are serving in hospitals in this country and overseas.

Frequent sterilization with high temperature steam or strong disinfectants will not injure stainless steels. Their smooth, hard surface is easily kept free from germs that can cause fatal infection. Even in the damp tropics, stainless steels do not rust. Tough and durable, free from the possibility of chipping, stainless steels can withstand the rigors of wartime use.

On the home front, too, stainless steels are making their contribution to the health of the nation. Because they are easier to clean and keep clean than other metals, they are widely used in equipment necessary to the processing, preparing and serving of foods. They keep their bright finish, impart no flavor to food, and resist food chemicals. They will be used increasingly in restaurants, in the home, and in many industries where their unique properties are so desirable.

Stainless steels are “stainless” because they contain more than 12 per cent chromium. Low-carbon ferrochromium, a research development of ELECTRO METALLURGICAL COMPANY, a Unit of UCC, is the essential ingredient in the large-scale production of stainless steel. Units of UCC do not make steel of any kind. They do make available to steelmakers many alloys which, like ferrochromium, improve the quality of steel. The basic research of these Units means useful new metallurgical information—and better metals to supply the needs and improve the welfare of mankind.

Members of the medical profession, architects and designers are invited to send for booklet 0-4 “THE USE OF STAINLESS STEELS IN HOSPITALS.” There is no obligation.

CARBON FOR HEALTH. Research by a UCC Unit has resulted in different forms of carbon used in milk irradiators, “sun” lamps, gas masks—and in air conditioning installations.

GASES FOR HEALTH. LINDE oxygen U. S. P. made by a Unit of UCC is used by the sick in hospitals and at home—and it contributes to the safety of our high flying aviators.

CHEMICALS FOR HEALTH. Synthetic organic chemicals, developed by a Unit of UCC, mean better anesthetics, more plentiful sulfas drugs, vitamins and other pharmaceuticals.

PLASTICS FOR HEALTH. BAKELITE and VINYLITE plastics, produced by UCC Units, mean sanitary paints, floor coverings, sheeting, “burn sleeves” and other essentials.

UNION CARBIDE AND CARBON CORPORATION
30 East 42nd Street UCC New York 17, N. Y.

ALLOYS AND METALS
Electro Metallurgical Company
Haynes Stellite Company
United States Vanadium Corporation

CHEMICALS
Carbide and Carbon Chemicals Corporation

ELECTRODES, CARBONS & BATTERIES
National Carbon Company, Inc.

INDUSTRIAL GASES AND CARBIDE
The Linde Air Products Company
The Osxweld Railroad Service Company
The Prest-O-Lite Company, Inc.

PLASTICS
Bakelite Corporation
Plastics Division of Carbide and Carbon Chemicals Corporation
The "Optical Physical"
For Fighting Fuels

Today, the American petroleum industry is providing the airmen of the United Nations with the most powerful fighting fuels in the world.

In the production of these, the Bausch & Lomb Precision Refractometer has had an important part. This instrument, developed to meet a definite peacetime need for high precision and dependability, is typical of the many Bausch & Lomb products now performing major roles in the war effort.

Today, the skills in design, computation and craftsman-ship that make available such instruments as the Bausch & Lomb Precision Refractometer are also being applied to the instruments of war that make American gunnery so effective. Here again, when Victory is won, Bausch & Lomb will be able to extend its optical service to peace time pursuits because of its wartime accomplishments.

BAUSCH & LOMB
OPTICAL CO. • ROCHESTER, N.Y.
ESTABLISHED 1853
THE LAW OF DIMINISHING RETURNS

By Dr. JOEL STEBBINS

WASHBURN OBSERVATORY, UNIVERSITY OF WISCONSIN

In the Encyclopaedia Britannica under the heading, "Law of Diminishing Returns," we find that this law was first stated in relation to agriculture:

An increase in the capital and labor applied to the cultivation of land causes in general a less than proportionate increase in the amount of produce raised unless it happens to coincide with an improvement in the arts of agriculture.

In economics, then, the law of diminishing returns is merely a precise statement of what is ordinarily recognized in the affairs of the working world. Everybody knows that, after a certain point, work in given conditions yields a diminishing return unless a better method is invented applicable to those conditions.

We in this society naturally include astronomy in the affairs of the working world, and it may be instructive to trace some of the applications of the law of diminishing returns in our own field. To begin with, this law took hold of the increasing size of refracting telescopes and brought further development to a close with the completion of the 40-inch refractor some fifty years ago. True, it was the rediscovery of the possibilities of the reflecting telescope that turned the construction of new instruments into the other form. But even if there had been no reflectors it was obvious from geometrical and optical principles, not to mention atmospheric limitations, that each increase in size of the objective of a refractor was accompanied by less than a proportionate increase of power.

The same law is now holding for reflectors even if the 200-inch, as we hope, should turn out to be a complete success. I understand that at Mount Wilson the 100-inch reflector cost about four times as much as the 60-inch, while the 200-inch will cost ten times as much as the 100-inch. No one thinks for a moment that the resulting gain in power will be proportional to the outlay. These facts are elementary to astronomers but to the laymen we might quote the simple