Supplementary Material

Materials and Methods

Synthesis of TBL₄K. (BOC-LL)$_2$ ketone (1) was treated with trifluoroacetic acid following modification of the free amino groups with 1 eq. of 4-(3’-trifluoromethyl-3H-diazirin-3-yl)benzoic acid N-hydroxy-succinimidyl ester (Photoprobes) and 1 eq. of biotinamidocapronic acid N-hydroxysuccinimidyl ester (Molecular Probes).

Inhibition and photo-labeling of SPP with TBL₄K. The inhibitory effect of TBL₄K on SPP was tested with in vitro synthesized substrates HLA-A/24 and HLA-A*03/30 as described (1, 2). For analytical labeling, 2 µl of rough ER membrane proteins solubilized with the detergent CHAPS (Anatrace), were diluted with 16 µl of assay buffer (25 mM HEPES-KOH, pH 7.6, 100 mM KOAc, 2 mM Mg(OAc)$_2$, 1 mM DTT) and supplemented with 50 nM TBL₄K (dissolved in DMSO). Samples were incubated at 30 °C for 1 hour and subsequently irradiated with UV light (30 seconds; 350 W high pressure mercury lamp with a Pyrex filter, 10 cm distance to lamp) (3). Proteins were precipitated with 10 % trichloroacetic acid and resolved on Tris-glycine acrylamide gels (10 % acrylamide/bis-acrylamid 37.5:1). Biotinylated proteins were visualized by Western blotting with a polyclonal anti-biotin antibody (Bethyl).

Preparative labeling and purification. 15 ml of CHAPS-solubilized ER membrane proteins (prepared from 15-20’000 equivalents rough microsomes (4)) were diluted with 120 ml of assay buffer (see above) and supplemented with 20 µl of 500 µM TBL₄K in DMSO. After incubation at 30 °C for 1 hour, the sample was distributed between four 50
ml polypropylene tubes and irradiated with UV light for 30 seconds. The sample was supplemented with 15 ml of 5 M NaCl and 2.6 ml of 20 % reduced Triton X-100 (Sigma) and applied to a 1 ml Con A-sepharose column (Amersham-Pharmacia), that had been equilibrated with EQ buffer I (50 mM HEPES-KOH, pH 7.6, 500 mM NaCl, 20 mM sucrose, 1 mM DTT, 0.35 % reduced Triton X-100). After washing with EQ buffer I, bound proteins containing TBL₄K-labeled species were eluted with 15 ml EQ buffer I containing 1 M methyl-α-D-glucopyranoside. The eluate was diluted 10 times with 50 mM HEPES-KOH, pH 7.6, 1 mM DTT, 0.35 % reduced Triton X-100 to reduce salt concentration, and applied to a 2.5 ml hydroxyapatite column (BioRad), which had been equilibrated with EQ buffer II (50 mM HEPES-KOH, pH 7.6, 50 mM KOAc, 1 mM DTT, 0.35 % reduced Triton X-100). The column was next washed with 12.5 ml of EQ buffer II, and bound proteins containing TBL₄K-labeled species were eluted with 3 ml elution buffer (50 mM HEPES-KOH, pH 7.6, 500 mM KOAc, 200 mM KP₀, 1 mM DTT, 0.35 % reduced Triton X-100). Proteins were next precipitated by adding 300 µl of 100 % trichloroacetic acid. After centrifugation (Eppendorf centrifuge, 14’000 rpm, 4 °C, 5 min), the protein pellet was washed with acetone and re-suspended in 50 % formic acid. The sample was applied to a RP4 reversed phase HPLC column (CC 125/4 Nucleosil 300-5 C4; Machery Nagel), which had been equilibrated with 50 % formic acid. Proteins were first eluted with a linear gradient of 50 % formic acid in H₂O to 50 % formic acid in acetonitrile. After re-equilibration with 50 % formic acid in H₂O, residual proteins including TBL₄K-labeled species were eluted with a linear gradient of 50 % formic acid in H₂O to 50 % formic acid in propan-2-ol. Fractions containing the TBL₄K-labeled species were pooled and proteins were resolved by SDS-PAGE using a Tris-glycine
acrylamide gel (10 % acrylamide/bis-acrylamid 37.5:1). Proteins were visualized by coomassie blue staining and the TBL_{4K}-labeled protein was identified by Western blotting using anti-biotin antibody. The corresponding coomassie stained band was excised from the gel and subjected to sequencing by mass spectrometry.

Sequencing by Mass Spectrometry and sequence alignments. Proteins were reduced, alkylated and in-gel trypsin digested as described (5). Peptides were extracted from the gel and desalted by using ZipTip desalting columns (Millipore). Tandem mass spectrometry (MS/MS) analysis was performed using a nanoelectrospray source (Protana A/S) coupled to the high performance hybrid quadrupole time of flight API QSTAR™ Pulsar mass spectrometer (MDS-Sciex). Doubly or triply charged tryptic parent ion candidates were selected and product ion spectra generated by collision-induced dissociation (CID). The spectra were used to search the NCBInr and dbEST databases (http://www.ncbi.nih.gov/LocusLink/index.html; http://www.ncbi.nih.gov/dbEST/index.html) with the Mascot MS/MS search engine (Matrix Science; http://www.matrixscience.com/cgi/index.pl?page=./home.html). Comparison of the retrieved peptide sequence and masses with the tandem mass spectrum identified the sequences NASDMPETITSR, QYQLLFTQGSGENK, LVFPQDLLEK, and GEVTEMFSYEESNPK in the predicted human protein gi:14772424, FFPANFPNR in the homologous mouse protein gi:14772424 (FFPASFPNR in the human protein), and EEIINYEFATK (EEIINYEFDTK in the human and mouse proteins).
Plasmid constructs and expression of human SPP in yeast. Human SPP cDNA is based on human EST fragments from the NCBI database coding for human protein gi:14772424. The cDNA was amplified from a HeLa cell-derived cDNA library with Pfu DNA polymerase (Stratagene) and the PCR primes 5'-'ACGACTAGTTCCACCATGGACTCGGCCCTCAGC-3' and 5'-'TGGAAGCTTCCTGAGAGCTCGGCACCAGC-3'. The resulting 1181bp fragment was cloned into the SpeI/HindIII sites of the yeast expression vector p426gal1 (6) yielding pDAW300. The sequence was confirmed by sequencing and deposited in EMBL databank (AJ420895). SPP mutants D265A and N10Q/N20Q were generated by using the QuickChange Site-Directed Mutagenesis Kit (Stratagene) resulting in pDAW302, and pDAW306. Plasmids were next transformed into *S. cerevisiae* strain BY4742 (MATα; his3Δ; leu2Δ0; lys2Δ0; ura3Δ0) (7) by lithium acetate transformation to give yeast strains DAW300 (MATα; his3Δ; leu2Δ0; lys2Δ0; ura3Δ0; p(spp, gal1,2μ,ura3)), DAW302 and DAW306. Strains were grown at 23 °C in SC-medium with 2 % galactose and appropriate supplements for selective growth until an OD$_{600}$ of ~0.6 was reached. Yeast microsomes (8) were solubilized with CHAPS, tested for activity, and labeled with TBL$_4$K as described above (1).

In vitro translation and translocation. *In vitro* translations were performed in reticulocyte lysate (Promega) as described (2). For protein translocation, ER-derived rough microsome were added to translation reactions and incubated with or without the glycosylation inhibitor N-benzoyl-Asn-Leu-Thr-methylamide (2).
References

Supplemental Figures

Fig. S1. Multiple sequence alignment (ClustalW 1.4) of predicted amino acid sequences of human SPP (CAD13132.1) and potential orthologues in *Mus musculus* (BAB25172), *Drosophila melanogaster* (AAL48184), *Caenorhabditis elegans* (P49049), and *Arabidopsis thaliana* (AAL38345). Conserved residues are highlighted; the "YD" and "LGLGD" motifs are underlined. Accession numbers refer to the EMBL/GenBank/DDBJ database (http://www.ncbi.nlm.nih.gov/Genbank/index.html).

Fig. S2. Glycosylation of asparagines-10 and -20 *in vitro*. The NH$_2$-terminal 150 residues of wt (lanes 1-3) and N10Q/N20Q mutant SPP (lanes 4-6) were translated *in vitro* in the presence of ER-derived rough microsomes isolated from canine pancreas (lanes 2, 3, 5 and 6) and in the presence (lanes 3 and 6) or absence of acceptor tripeptide (N-benzoyl-Asn-Leu-Thr-methylamide) to inhibit glycosylation. Dots indicate glycosylated proteins.
Figure S1
Figure S2

<table>
<thead>
<tr>
<th>kD</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- SPP/150

<table>
<thead>
<tr>
<th></th>
<th>wt</th>
<th>N10Q/N20Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microsomes</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Acc. tripeptide</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

+ + + + +

- - - - +