Supplementary Materials for

Emerging Disease or Diagnosis?

*E-mail: sgire@oeb.harvard.edu; psabeti@oeb.harvard.edu

Published 9 Novermber 2012, Science 338, 750 (2012)
DOI: 10.1126/science.1225893

This PDF file includes:

Author affiliations
References S1
Figs. S1 and S2
Tables S1 to S3
Note S1
Author Affiliations

1 Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
2 Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
3 Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
4 The National Aeronautics and Space Administration, Johnston Space Center, TX, USA
5 Medical Countermeasures Initiative, U.S. Food and Drug Administration, Silver Spring, MD, USA
6 Department of Epidemiology, The University of Texas School of Public Health, Brownsville Regional Campus, Brownsville TX, USA
7 Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA, USA
8 Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Nigeria
9 Department of Biological Sciences, College of Natural Sciences, Redeemers’ University, Ogun State, Nigeria
Department of Immunology and Infectious Diseases, Harvard School of Public Health,
Boston, MA, USA
References S1

Introducing emerging diseases

2. http://www.niaid.nih.gov/topics/emerging/Pages/list.aspx

Recognizing possibility of overlooked pathogens

Factors in disease emergence

Symptoms of Lassa fever and Ebola

Malaria overdiagnosis

Lassa fever outbreak due to misdiagnosis

Discovery of Lassa, Ebola, and Marburg viruses

Example of an emerging disease

General background on use of IFA and ELISA in Lassa fever and Ebola

doi:10.1016/S0140-6736(10)60667-8 Medline

Seroprevalence of Lassa virus

doi:10.1007/s004300100061 Medline

doi:10.1093/infdis/155.3.437 Medline

Epidemiology of Lassa fever

Seroprevalence of Ebola virus

 doi:10.1016/S0140-6736(82)91871-2 Medline

 doi:10.1016/0035-9203(82)90089-X Medline

 doi:10.1016/0035-9203(82)90113-4 Medline

 doi:10.1016/S0923-2516(89)80112-8 Medline

 doi:10.1016/0035-9203(89)90519-1 Medline

Also references 24, 25, and 31

Lassa virus reservoir: Mastomys natalensis

Proposed Ebola reservoirs

 doi:10.1038/438575a Medline

 doi:10.1089/vbz.2008.0167 Medline
Data on Animal Habitats

 <http://www.iucnredlist.org>. Downloaded on 10 January 2012

Enduring Transmission in Animal Outbreak

 doi:10.1126/science.1133105 Medline

85. E. M. Leroy et al., Multiple Ebola virus transmission events and rapid decline of central

 doi:10.1371/journal.pbio.0030371 Medline

87. E. M. Leroy et al., A serological survey of Ebola virus infection in central African nonhuman

Worldwide distribution of filoviruses and arenaviruses

88. T. Briese et al., Genetic detection and characterization of Lujo virus, a new hemorrhagic
 doi:10.1371/journal.ppat.1000455 Medline

89. A. T. B. Peterson, J. T. Bauer, J. N. Mills, Ecologic and geographic distribution of filovirus

90. A. Negredo et al., Discovery of an ebolavirus-like filovirus in europe. PLoS Pathog. **7**,
 e1002304 (2011). doi:10.1371/journal.ppat.1002304 Medline

91. F. D. Mathiot CC, Georges AJ, Coulanges P, Antibodies to haemorrhagic fever viruses in
Filovirus integration into mammalian genomes

Lassa and Ebola virus genome evolution

Natural selection on malaria resistance

Evidence for natural selection at the gene LARGE

Role of LARGE in Lassa fever pathogenesis

Evidence of natural selection for other genes linked to viral infection

 doi:10.1371/journal.pbio.0020275 Medline

 doi:10.1007/978-3-642-02175-6_3 Medline

 doi:10.1016/j.tim.2010.06.010 Medline

 doi:10.1371/journal.ppat.1000443 Medline

 doi:10.1371/journal.ppat.1000300 Medline

Evidence for natural resistance to Lassa virus

Evidence for natural resistance to Ebola virus

Examples of surveillance and vaccine efforts

Current drug treatment for Lassa fever

Evidence for utility of early diagnosis to changing patient outcomes

 doi:10.1016/S0163-4453(95)90670-3 Medline

Lassa fever efforts in Sierra Leone and Nigeria

Lassa Fever in Nigeria 2012

Figure S1. Current list of emerging viruses (1, 2).

<table>
<thead>
<tr>
<th>Arenavirus</th>
<th>Herpesvirus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lassa Virus</td>
<td>Human herpesvirus-6/7-7/8</td>
</tr>
<tr>
<td>Lujo Virus (Zambia)</td>
<td>Herpes Simplex- 1/2</td>
</tr>
<tr>
<td>Junin, Machupo, Guanarito and Sabia</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bunyavirus</th>
<th>Orthomyxovirus</th>
</tr>
</thead>
<tbody>
<tr>
<td>California Serogroup Viruses</td>
<td>Influenza</td>
</tr>
<tr>
<td>Crimean-Congo (CCHF) Virus</td>
<td></td>
</tr>
<tr>
<td>Hanta Virus</td>
<td>Papillomavirus (HPV)</td>
</tr>
<tr>
<td>Rift Valley Fever</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calicivirus</th>
<th>Paramyxovirus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noroviruses</td>
<td>Hendra or equine morbilli virus</td>
</tr>
<tr>
<td>SARS</td>
<td>Measles</td>
</tr>
<tr>
<td></td>
<td>Mumps</td>
</tr>
<tr>
<td></td>
<td>Nipah Virus</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coronavirus</th>
<th>Parvovirus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterovirus</td>
<td>Human Parvovirus B19</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Filovirus</th>
<th>Reovirus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ebola Virus</td>
<td>Rotaviruses</td>
</tr>
<tr>
<td>Marburg Virus</td>
<td></td>
</tr>
<tr>
<td>Lluvio Virus (Spain)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flavivirus</th>
<th>Retrovirus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dengue Virus</td>
<td>Human T-Cell Leukemia Virus (HTLV)</td>
</tr>
<tr>
<td>Hepatitis C Virus</td>
<td>HIV-1/2</td>
</tr>
<tr>
<td>Japanese Equine Encephalitis (JEE)</td>
<td></td>
</tr>
<tr>
<td>Omsk, Kyasanur (tick-borne)</td>
<td></td>
</tr>
<tr>
<td>Yellow Fever Virus</td>
<td></td>
</tr>
<tr>
<td>West Nile Virus</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hepadnavirus</th>
<th>Rhabdovirus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hepatitis B Virus</td>
<td>Australian bat lyssavirus</td>
</tr>
<tr>
<td></td>
<td>Irkut Virus</td>
</tr>
<tr>
<td></td>
<td>Khujand Virus</td>
</tr>
<tr>
<td></td>
<td>Rabies Virus</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hepevirus</th>
<th>Togavirus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hepatitis E Virus</td>
<td>Chikungunya Virus</td>
</tr>
<tr>
<td></td>
<td>Eastern Equine Encephalitis (EEE)</td>
</tr>
<tr>
<td></td>
<td>Ross River Virus</td>
</tr>
<tr>
<td></td>
<td>Venezuelan Equine Encephalitis (YEE)</td>
</tr>
<tr>
<td></td>
<td>Western Equine Encephalitis (WEE)</td>
</tr>
</tbody>
</table>
Figure S2. Ebola and Lassa seroprevalence and distribution of animal habitats.

Lassa (A) and Ebola (B) seroprevalence levels as identified by IgG in ELISA-based studies are represented by countries highlighted in gradated orange - darker being higher seroprevalence. (See Table S1-2 and References. We show only estimates from studies based on ELISA, as studies performed with IFAT may not as accurately reflect prevalence rates), as well as distribution of animal habitats. In A, while it is not fully known what regions or subspecies of *Mastomys natalensis* may carry Lassa Fever, the striped area represents the Lassa risk map developed by Fichet-Calvet *et al.* based on climate and annual rainfall (74). In B, great ape habitats include *Gorilla gorilla*, *Pan paniscus*, and *Pan troglodyte* species. Bat habitats include *Epomops franqueti*, *Hypsognathus monstrosus*, and *Myonycteris torquata* species. Animal habitat data is from the International Union for Conservation of Nature (IUCN) Red List of Threatened Species (83).
Table S1. Lassa virus seroprevalence in African countries.

<table>
<thead>
<tr>
<th>Year</th>
<th>Country</th>
<th>Cohort Size</th>
<th>Test</th>
<th>Prevalence</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>Guinea & Nigeria</td>
<td>75</td>
<td>IFA</td>
<td>23%</td>
<td>27</td>
</tr>
<tr>
<td>N/A</td>
<td>Uganda</td>
<td>50</td>
<td>IFA</td>
<td>0%</td>
<td>27</td>
</tr>
<tr>
<td>1978</td>
<td>Sierra Leone</td>
<td>953</td>
<td>IFA</td>
<td>26%</td>
<td>28</td>
</tr>
<tr>
<td>1980-1982</td>
<td>Liberia</td>
<td>1491</td>
<td>IFA</td>
<td>6.5%</td>
<td>29</td>
</tr>
<tr>
<td>1987</td>
<td>Sierra Leone</td>
<td>3456</td>
<td>IFA</td>
<td>8-52%</td>
<td>30</td>
</tr>
<tr>
<td>1988</td>
<td>Nigeria</td>
<td>1677</td>
<td>IFA</td>
<td>21.3%</td>
<td>31</td>
</tr>
<tr>
<td>1990-92</td>
<td>Guinea</td>
<td>3126</td>
<td>ELISA</td>
<td>3.4-54.9%</td>
<td>32</td>
</tr>
<tr>
<td>1993</td>
<td>Guinea (Southeast)</td>
<td>232</td>
<td>IFA</td>
<td>2.6%</td>
<td>33</td>
</tr>
<tr>
<td>1993</td>
<td>Guinea (Northwest)</td>
<td>751</td>
<td>IFA</td>
<td>14%</td>
<td>33</td>
</tr>
<tr>
<td>2000</td>
<td>Guinea</td>
<td>977</td>
<td>IFA</td>
<td>12%</td>
<td>34</td>
</tr>
<tr>
<td>2007</td>
<td>Guinea</td>
<td>213</td>
<td>ELISA</td>
<td>12-20%</td>
<td>35</td>
</tr>
<tr>
<td>2007</td>
<td>Ivory Coast</td>
<td>50</td>
<td>ELISA</td>
<td>20%</td>
<td>35</td>
</tr>
<tr>
<td>2007</td>
<td>Ghana</td>
<td>480</td>
<td>ELISA</td>
<td>3.8%</td>
<td>35</td>
</tr>
<tr>
<td>2007</td>
<td>Benin</td>
<td>101</td>
<td>ELISA</td>
<td>9.9%</td>
<td>35</td>
</tr>
<tr>
<td>2007</td>
<td>Nigeria</td>
<td>116</td>
<td>ELISA</td>
<td>10.3%</td>
<td>35</td>
</tr>
</tbody>
</table>

*Year samples were collected
Table S2. Ebola virus seroprevalence in Africa, Asia and Central America since 1961

<table>
<thead>
<tr>
<th>Year*</th>
<th>Country</th>
<th>Cohort Size</th>
<th>Test</th>
<th>Prevalence</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1961-62</td>
<td>Ethiopia</td>
<td>277</td>
<td>IFA</td>
<td>19.8%</td>
<td>40</td>
</tr>
<tr>
<td>1977</td>
<td>DRC</td>
<td>984</td>
<td>IFA</td>
<td>4%</td>
<td>41</td>
</tr>
<tr>
<td>1977</td>
<td>Sudan (Maridi)</td>
<td>214</td>
<td>IFA</td>
<td>33%</td>
<td>41</td>
</tr>
<tr>
<td>1977</td>
<td>Sudan (Nzara)</td>
<td>218</td>
<td>IFA</td>
<td>6.4%</td>
<td>41</td>
</tr>
<tr>
<td>1977</td>
<td>Zimbabwe</td>
<td>243</td>
<td>IFA</td>
<td>3%</td>
<td>41</td>
</tr>
<tr>
<td>1977</td>
<td>Panama</td>
<td>200</td>
<td>IFA</td>
<td>2%</td>
<td>41</td>
</tr>
<tr>
<td>1978</td>
<td>DRC</td>
<td>1096</td>
<td>IFA</td>
<td>7.2%</td>
<td>42</td>
</tr>
<tr>
<td>1978</td>
<td>Liberia</td>
<td>481</td>
<td>IFA</td>
<td>6%</td>
<td>24</td>
</tr>
<tr>
<td>1979</td>
<td>CAR</td>
<td>1344</td>
<td>IFA</td>
<td>3%</td>
<td>25</td>
</tr>
<tr>
<td>1979</td>
<td>Sudan</td>
<td>23</td>
<td>IFA</td>
<td>25%</td>
<td>43</td>
</tr>
<tr>
<td>1979-82</td>
<td>CAR</td>
<td>1909</td>
<td>IFA</td>
<td>4.5%</td>
<td>44</td>
</tr>
<tr>
<td>1980</td>
<td>Kenya</td>
<td>84</td>
<td>IFA</td>
<td>5%</td>
<td>45</td>
</tr>
<tr>
<td>1980</td>
<td>Gabon</td>
<td>253</td>
<td>IFA</td>
<td>6.3%</td>
<td>46</td>
</tr>
<tr>
<td>1980</td>
<td>Cameroon</td>
<td>1517</td>
<td>IFA</td>
<td>9.7%</td>
<td>47</td>
</tr>
<tr>
<td>1980</td>
<td>CAR</td>
<td>499</td>
<td>IFA</td>
<td>3.4%</td>
<td>48</td>
</tr>
<tr>
<td>1980</td>
<td>Zimbabwe</td>
<td>486</td>
<td>IFA</td>
<td>1.8%</td>
<td>49</td>
</tr>
<tr>
<td>1981</td>
<td>Kenya</td>
<td>1899</td>
<td>IFA</td>
<td>1.4%</td>
<td>50</td>
</tr>
<tr>
<td>1981-82</td>
<td>Liberia</td>
<td>225</td>
<td>IFA</td>
<td>13%</td>
<td>51</td>
</tr>
<tr>
<td>1981-85</td>
<td>DRC</td>
<td>137</td>
<td>IFA</td>
<td>1%</td>
<td>52</td>
</tr>
<tr>
<td>1982-83</td>
<td>Guinea</td>
<td>138</td>
<td>IFA</td>
<td>8%</td>
<td>53</td>
</tr>
<tr>
<td>1983</td>
<td>Ethiopia</td>
<td>250</td>
<td>IFA</td>
<td>0%</td>
<td>40</td>
</tr>
<tr>
<td>1984</td>
<td>CAR</td>
<td>296</td>
<td>IFA</td>
<td>2.6%</td>
<td>54</td>
</tr>
<tr>
<td>1984</td>
<td>Kenya</td>
<td>471</td>
<td>IFA</td>
<td>10%</td>
<td>55</td>
</tr>
<tr>
<td>1984</td>
<td>Uganda</td>
<td>132</td>
<td>IFA</td>
<td>4.5%</td>
<td>56</td>
</tr>
<tr>
<td>1984-86</td>
<td>Botswana</td>
<td>154</td>
<td>IFA</td>
<td>0%</td>
<td>57</td>
</tr>
<tr>
<td>1985</td>
<td>Gabon</td>
<td>213</td>
<td>IFA</td>
<td>9.4%</td>
<td>54</td>
</tr>
<tr>
<td>1985</td>
<td>CAR</td>
<td>659</td>
<td>IFA</td>
<td>22%</td>
<td>54</td>
</tr>
<tr>
<td>1985</td>
<td>Cameroon</td>
<td>375</td>
<td>IFA</td>
<td>2%</td>
<td>58</td>
</tr>
<tr>
<td>1987</td>
<td>CAR</td>
<td>4295</td>
<td>IFA</td>
<td>21%</td>
<td>59</td>
</tr>
<tr>
<td>1987</td>
<td>CAR</td>
<td>427</td>
<td>IFA</td>
<td>17.6%</td>
<td>59</td>
</tr>
<tr>
<td>1986-87</td>
<td>Nigeria</td>
<td>1677</td>
<td>IFA</td>
<td>1.7%</td>
<td>31</td>
</tr>
<tr>
<td>1987</td>
<td>Chad</td>
<td>334</td>
<td>IFA</td>
<td>3.6%</td>
<td>60</td>
</tr>
</tbody>
</table>
Table S2 (Continued). Ebola virus seroprevalence in Africa, Asia and Central America since 1961

<table>
<thead>
<tr>
<th>Year*</th>
<th>Country</th>
<th>Cohort Size</th>
<th>Test</th>
<th>Prevalence</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1987</td>
<td>Cameroon</td>
<td>1152</td>
<td>IFA</td>
<td>7.7%</td>
<td>60</td>
</tr>
<tr>
<td>1987</td>
<td>DRC</td>
<td>728</td>
<td>IFA</td>
<td>10%</td>
<td>60</td>
</tr>
<tr>
<td>1987</td>
<td>Equatorial Guinea</td>
<td>688</td>
<td>IFA</td>
<td>16.1%</td>
<td>60</td>
</tr>
<tr>
<td>1988</td>
<td>Madagascar</td>
<td>381</td>
<td>IFA</td>
<td>4%</td>
<td>61</td>
</tr>
<tr>
<td>1989-90</td>
<td>Phillipines</td>
<td>186</td>
<td>IFA</td>
<td>6%</td>
<td>62</td>
</tr>
<tr>
<td>1995</td>
<td>CAR</td>
<td>1331</td>
<td>ELISA</td>
<td>5.3%</td>
<td>63</td>
</tr>
<tr>
<td>1995</td>
<td>DRC</td>
<td>414 City</td>
<td>ELISA</td>
<td>2.2%</td>
<td>64</td>
</tr>
<tr>
<td>1995</td>
<td>DRC</td>
<td>161 Village</td>
<td>ELISA</td>
<td>9.3%</td>
<td>64</td>
</tr>
<tr>
<td>1996</td>
<td>Phillipines</td>
<td>231</td>
<td>ELISA</td>
<td>0.4%</td>
<td>65</td>
</tr>
<tr>
<td>1996</td>
<td>Gabon</td>
<td>236 (Jan)</td>
<td>ELISA</td>
<td>10%</td>
<td>66</td>
</tr>
<tr>
<td>1996</td>
<td>Gabon</td>
<td>205 (Spring)</td>
<td>ELISA</td>
<td>17%</td>
<td>66</td>
</tr>
<tr>
<td>1997</td>
<td>Gabon</td>
<td>979</td>
<td>ELISA</td>
<td>1.4%</td>
<td>67</td>
</tr>
<tr>
<td>2005-08</td>
<td>Gabon</td>
<td>4349</td>
<td>ELISA</td>
<td>15.3%</td>
<td>68</td>
</tr>
</tbody>
</table>

*Year samples were collected; CAR (Central African Republic), DRC (Democratic Republic of Congo).

Table S3. Positive selection in humans associated with emerging viral infection.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Analysis</th>
<th>Cellular function</th>
<th>Reported viral associations</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>LARGE</td>
<td>CMS*</td>
<td>Glycosyltransferase that modifies α-dystroglycan</td>
<td>Lassa virus</td>
<td>99-102</td>
</tr>
<tr>
<td>APOBEC3</td>
<td>dN/dS</td>
<td>Cytidine deaminase and antiviral restriction factor</td>
<td>HIV, SIV, MLV, Hepatitis B virus</td>
<td>105-106</td>
</tr>
<tr>
<td>TRIM5</td>
<td>dN/dS</td>
<td>E3 ubiquitin ligase and antiviral restriction factor</td>
<td>HIV, SIV, EIAV, MLV</td>
<td>107-108</td>
</tr>
<tr>
<td>BST-2/ Tetherin**</td>
<td>dN/dS</td>
<td>Prevents viral budding</td>
<td>Ebola, Marburg, Lassa, HIV, SIV, MLV, HTLV-1, KSHV, EIAV, spumaviruses, XMRV</td>
<td>109-112</td>
</tr>
</tbody>
</table>

*Composite of multiple signals; **certain codons; HTLV-1 (human T-cell leukemia virus), HIV (human immunodeficiency virus), SIV (simian immunodeficiency virus), MLV (murine leukemia
virus), EIAV (Equine infectious anemia virus), KSHV (Kaposi’s sarcoma herpes virus) and XMRV (Xenotropic murine leukemia virus-related virus)
Note S1. Background on Lassa and Ebola Virus Seroprevalence Studies

Seroprevalence studies attempt to estimate the number of individuals in a given population that have been exposed to a specific microbe. They generally test for the presence of specific IgM or IgG antibodies produced in response to previous infections. Two types of biochemical assays have been used to determine the prevalence of Lassa and Ebola virus immunoglobulin prevalence in various populations: the indirect fluorescent antibody test (IFAT) and the enzyme-linked immunosorbent assay (ELISA).

The Indirect fluorescent antibody (IFA) test was a widely used technique for viral hemorrhagic fever serology prior to 1990. However—for at least Ebola virus—the test lacks specificity in populations that have never been exposed to African filoviruses. For example, in tests of 449 randomly individuals from primary care facilities in the United States—who had no exposure to primates or travel in Africa—12 were found to test positive for Ebola IgG (22). Because of IFATs low specificity, results from seroprevalence studies using this test should viewed with caution.

The enzyme-linked immunosorbent assay (ELISA), has improved specificity and sensitivity compared to IFA tests (19). This test is now considered the gold standard for Lassa and Ebola seroprevalence studies and several ELISAs for the detection of arena virus and filo-virus specific antibodies have been developed. However, because viruses within the same family can be closely related, the ability to distinguish between specific species can be difficult; sera and plasma from some patients shows significant cross-reactivity with antigens from multiple arenavirus and filovirus species (19, 23). Thus, it is likely that current ELISA assays will detect closely related species or even distantly related species. The limited ability to specifically distinguish between related strains suggests that these tests might detect related, as well as divergent, species circulating in the observed population.
The sensitivity of the ELISA appears to be robust and antibodies can be detected long after infection. In one study Ebola-specific IgG persisted in non-human primates for at least 400 days; in two human samples it persisted for more than 10 years (23). It should also be noted that a positive result does not necessarily mean the individual was exposed to a pathogenic virus capable of replication in its host. A positive test result could result from contact with a noninfectious viral particle or exposure to very low levels of antigen.

Unlike chronic viral infections in which the host becomes persistently infected, detection of acute viral infections can be challenging. Therefore, assessing the incidence of viral hemorrhagic fevers, like Ebola and Lassa, can be particularly difficult. During a two-year period (2009 through 2010) 1,650 suspected cases of viral hemorrhagic fever were tested at the Irrua Specialist Teaching Hospital using PCR. 198 tested positive indicating the incidence of Lassa among suspected cases was 12% (128).