Supplementary Materials for

Order of Magnitude Smaller Limit on the Electric Dipole Moment of the Electron

*The collaboration consists of all listed authors. There are no additional collaborators.
†Corresponding author. E-mail: acme@physics.harvard.edu (D.D., J.M.D., G.G.)

Published 19 December 2013 on Science Express
DOI: 10.1126/science.1248213

This PDF file includes:
Materials and Methods
Fig. S1
Table S1
References
Supplementary Materials

Apparatus

We create a pulsed molecular beam of ThO using the buffer gas beam technique16-18. Each packet of molecules leaving the source contains $\sim 10^{11}$ ThO molecules in the $J = 1$ rotational level of the ground electronic (X) and vibrational state and are produced at a repetition rate of 50 Hz. The packet is 2-3 ms wide and has a center of mass speed of ~ 200 m/s. The chamber background pressure of $< 10^{-6}$ Torr suggests a ThO-background gas collision probability of $\lesssim 1\%$ during the spin precession measurement which could cause a small decrease in fluorescence signal or contrast.

After leaving the cryogenic beam source chamber, the ground state molecules are in a thermal distribution of rotational states at about 4 K with a rotational constant of about $B_R \approx 10$ GHz. We use a series of lasers and microwaves to enhance the population of the single rotational state, $|X; J = 1\rangle$. The molecules travel through optical pumping lasers resonant with the $|X; J = 2, 3\rangle \rightarrow |C; J = 1, 2\rangle$ transitions, followed by a microwave field resonant with the $|X; J = 0\rangle \leftrightarrow |X; J = 1\rangle$ transition. The optical pumping lasers transfer population from $|X; J = 2, 3\rangle$ into the $|X; J = 0, 1\rangle$ states respectively. The microwaves then mix the populations of $|X; J = 0, M = 0\rangle$ and $|X; J = 1, M = 0\rangle$ resulting in an overall population increase in $|X; J = 1\rangle$ of a factor of ~ 2.

The molecules then pass through adjustable and fixed collimating apertures before entering the magnetically shielded interaction region, where electric and magnetic fields are applied. The quantization axis is not preserved between the microwave region and the electric field plates so the population in the three M sublevels of $|X; J = 1\rangle$ are mixed. A retroreflected 943 nm laser optically pumps population from the $|X; J = 1, M = \pm 1\rangle$ states to $|A; J = 0, M = 0\rangle$, which spontaneously decays partially into the $|H; J = 1\rangle$ state in which the EDM measurement is performed.

The spin precession region contains electric and magnetic fields, along with lasers to prepare and read our EDM state. The electric field is provided by two plates of 12.7 mm thick glass coated with a layer of indium tin oxide (ITO) on one side, and an anti-reflection coating on the other. The ITO coated sides of the plates face each other with a gap of 25 mm, and a voltage is applied to the ITO to create a uniform electric field. The spatial profile of the electric field was measured by performing microwave spectroscopy on the ThO molecules. When the molecule pulse is between the state preparation and read-out regions, a 40 μs burst of microwaves resonant with the DC Stark-shifted $|H; J = 1, M = \pm 1\rangle \rightarrow |H; J = 2, M = 0\rangle$ transitions is introduced by a microwave horn at the end of the apparatus, counterpropagating to the molecular beam. If on resonance, the microwaves drive a transition that spin-polarizes the molecules, similar to the state preparation scheme. We can then detect the spin polarization using the normal readout scheme. The microwave transition width is ~ 5 kHz (dominated by Doppler broadening), so the H-state dipole moment of $D \approx 1$ MHz/(V/cm)11 (for $J = 1$) means that this method is sensitive to mV/cm electric field deviations with spatial resolution of 1 cm, limited by the velocity distribution in the beam. Our measurement indicated that the spatial variation of the electric field plate separation is ~ 20 μm across the molecule precession region, in very good agreement with an interferometric measurement32. We can also test how well the electric field reverses by mapping the field with equal and opposite voltages on the plates. This measurement indicated that the non-reversing component of the electric field had magnitude $|E_{\text{nr}}| \approx 1-5$ mV/cm across the entire molecular precession region, as shown in Figure 3B.

The EDM measurement is performed in a vacuum chamber surrounded by five layers of mu-metal shielding. The applied magnetic field is supplied by a cosine-theta coil, with several shim coils to create a more uniform magnetic field within the precession region, and to allow us to apply transverse magnetic fields and gradients for systematic checks. Changes in the magnetic field are monitored by four 3-axis fluxgate magnetometers inside the magnetic shields, and the magnetic fields were mapped out before and after the experimental dataset was taken by sliding a 3-axis fluxgate down the beamline.

The lasers travel through the electric field plates, so all stages of the spin precession measurement are performed inside the uniform electric field. All laser light in the experiment originates from an external cavity diode lasers (ECDL), frequency stabilized via an Invar transfer cavity to a CW Nd:YAG laser locked to a molecular iodine transition.33 All required transition frequencies and state assignments were determined previously34-36. We measured the saturation intensities, radiative lifetimes, electric/magnetic dipole moments, and branching ratios for all required states and transitions.

In order to normalize against drifting molecular beam properties (pulse shape, total molecule number, velocity mean and distribution, etc.), we perform a spin precession measurement every 10 μs, which is much faster than the molecular beam variations15, spin precession time, and temporal width of the molecular pulse. The ~ 20 μs fly-through interaction time with the readout laser allows each molecule to be read-out by both \hat{X} and \hat{Y} polarizations. This is accomplished by sending the detection laser through two different beam paths, combined on the two ports of a polarizing beamsplitter. The two beam paths can be rapidly switched on and off with acousto-optic modulators (AOMs). The maximum rate of the polarization switching is limited by the 500 ns lifetime of the C state (decay rate of $\gamma \approx 2\pi \cdot 0.3$ MHz). A 1.2 μs delay is inserted between the pulses of \hat{X} and \hat{Y} polarized readout light (Fig. S1A), which minimizes the amount of residual fluorescence overlapping between subsequent polarization states. Since the polarization switching period is longer than the decay time of the C state, we expect $\lesssim 1\%$ of the C state population to spontaneously decay back to the H state while the molecules are in the readout laser beam. Each of these two effects reduces the contrast by about 1 percent. We searched for, but did not observe, changes in ω_{NP} as a function of time within a polarization cycle.

The transparent electric field plates allow us to collect a large fraction of the solid angle of fluorescence from the molecules. Fluorescence travels through the field plates into an eight-lens system (four behind each plate) which focuses the light into an optical fiber bundle. The four bundles on each side are coupled into a fused quartz light pipe, which carries the fluorescence to a PMT (outside the magnetic shields). The net detection efficiency, including collection solid angle and detector quantum efficiency, is about 1%. We typically register around 1000 photon counts per molecule pulse (Fig. S1B). The PMT photocurrents are read as analog signals by a low-noise, high-bandwidth amplifier, and then sent to a 24-bit digitizer operating at 5 megasamples/s. The control and timing for all experimental parameters is managed by a single computer, and the timing jitter is less than one digitizer sampling period.

Systematic Errors

The presence of a nonzero magnetic field component B_z (parallel or antiparallel to the electric field), leads to a nonzero two photon detuning, $\delta = 2\mu_g B_z |B_z|$, for the Λ system characterized...
FIG. S1. Relevant switching timescales (A) Time within the readout laser polarization switching cycle with a period of 10 μs. The molecule fluorescence rises rapidly when the laser is switched on, decays with rate γ/2 to a steady state (due to additional molecules entering the laser beam), and then decays with rate γ after the laser is switched off. Fluorescence is measured in detected photoelectrons/ms (kHz). (B) Time within the TiO molecule pulse after its creation by laser ablation. The fluorescence signals from (A) have been split up according to readout laser polarization to obtain the plotted points labeled by S_X and S_Y. The displayed fluorescence traces are averaged over 400 pulses, but 25 pulses are averaged for a given state of the experiment. (C) Switches performed within a block of data. The N switch randomly alternates between a $(-+)$ and $(+−)$ pattern, the E and $θ$ switches randomly alternate between a $(-+++)$ and $(+−−−)$ pattern, and the B switch alternates between a $(-+)$ and $(+−)$ pattern between blocks. (D) Switches performed within a superblock of data. The P state is assigned randomly between blocks, but other superblock patterns are deterministic. (E) Changes in the experimental procedure between superblocks. We alternated between taking data under “normal” conditions and taking data with “intentional parameter variations” (IPV), which were used to monitor systematic effects. The IPVs are a=ω$_{uv}$, b=Ω$_N^N$, and c=Δ$_{prep}$ (which was used to monitor the value of $θ^N$ by exaggerating its effect on the N,E correlated contrast). (F) An overview of the ~2 weeks of data comprising our reported EDM measurement.

TABLE S1. Parameters varied in the search for systematic errors. Category I: Parameters that were varied far from their values under normal conditions of the experiment. For each of these parameters direct measurements or limits were placed on possible systematic errors that could couple linearly to each by the method described in the main text. Category II: Parameters for which all values are considered consistent with normal conditions of the experiment. Although direct limits on systematic errors cannot be derived, these served as checks for the presence of unanticipated systematic errors.

by $|H,\tilde{N},M=+1\rangle\leftrightarrow|C,\tilde{P},M=0\rangle\leftrightarrow|H,\tilde{N},M=-1\rangle$. Such a $Λ$ system has a dark eigenstate (a state that has zero excited state $|C,\tilde{P},M=0\rangle$ amplitude) in the limit of $δ=0$, but for $δ≠0$, all eigenstates have nonzero excited state amplitude. In the limit of
small $\delta/\Omega_c \ll 1$ (in our case, $\delta/\Omega_c \sim 10^{-5}$), the introduction of the magnetic field mixes the bright and dark states with amplitudes proportional to δ/Ω_c. The bright state amplitude acquires an AC Stark shift and results in a change in the measured phase that is correlated with the magnetic field direction,

$$\phi_{\text{AC}}(\Delta, \Omega_t) = \alpha^B \Delta^2 + \beta^B \Omega_t,$$

where α^B and β^B are proportional to $|B_z|$ and depend on the spatial profile of the laser. This model was verified and these coefficients were measured directly from ϕ^B by varying Δ and Ω_t with AOMs.

The coupling of the Δ^{NE} and Ω^{NE}_t to this \hat{B}-odd AC Stark shift-induced phase leads to contributions to ϕ^{NEB}:

$$\phi^{\text{NEB}} = 2\alpha^B \Delta^{\text{NE}} + \beta^B \Omega^{\text{NE}}_t.$$

This phase is dominated by the $\beta^B \Omega^{\text{NE}}_t$ term since we operate the experiment on resonance, $\Delta \approx 0$; this was verified by observing that ϕ^{NEB} reversed sign with $k \cdot \hat{z}$ (since $\Omega^{\text{NE}}_t \propto k \cdot \hat{z}$). We used this effect to our advantage to measure the value of $\Omega^{\text{NE}}_t = \phi^{\text{NEB}} / \beta^B$ in our system. We measured ϕ^{NEB} from our EDM dataset, and we measured $\beta^B = \partial \phi^{\text{NEB}} / \partial \Omega^{\text{NE}}_t$ by intentionally correlating the laser power of the state preparation and read-out lasers with Δ^{NEB} using AOMs.

The ξ^{uu} and Ω^{NE}_t systematics, which result from AC Stark shift induced phases, were sensitive to the spatial intensity profile and polarization gradients in the prep and readout lasers. A sharper edge to the laser intensity profile reduces the size of the region where the AC Stark shift phase accumulates, therefore reducing the systematic slopes proportional to α and β. The dependence on the spatial intensity profile was confirmed by clipping our Gaussian laser beam profile with a razor edge. This data agreed with numerical simulations of the Schrödinger equation under varying spatial intensity profiles. To vary the polarization gradients, an optical chopping wheel was added on the state preparation laser beam, reducing the time averaged energy deposited in the field plates and hence also the thermally induced birefringence. As expected, the slope of the ξ^{uu} systematic was also reduced by half.

The two \tilde{N} states in which we perform our EDM measurement have magnetic moments differing by about 0.1 percent12. This difference is proportional to $|\xi_u|$ and is the main contribution to ϕ^{NE}. Therefore, any effect coupling to the magnetic moment to systematically shift ϕ^{ξ} will also produce a 1000-times smaller shift in ϕ^{NE}. We verified this by intentionally correlating a 1.4 mG component of B_z with \hat{E}, resulting in a large offset of ϕ^{ξ} and a 1000-times smaller offset of ϕ^{NE}; as expected. Although ϕ^{ξ} shifts caused by leakage current, $\mathbf{v} \times \hat{E}$, and geometric phase effects were observed in past experiments, we expect to be immune to such effects at our current level of sensitivity10. Indeed, the measured ϕ^{ξ} was consistent with zero for our reported data set. The mean and uncertainty of ϕ^{ξ}, divided by the measured suppression factor, is included in our ϕ^{NE} systematic error budget (see Table 1).

Data was stored and analyzed as a function of time after ablation and time within a polarization switch state. Due to the 10 percent longitudinal velocity dispersion of our molecule beam, the arrival time at our detectors is correlated with different longitudinal velocity classes, and therefore different precession times τ. We did not see any variation in the measured phases ϕ^{ξ} or ϕ^{NE} as a function of time after ablation.

Outlook

It is possible to further reduce this experiment’s statistical and systematic uncertainty. In a separate apparatus we have demonstrated that electrostatic molecule focusing and EDM state preparation via Stimulated Raman Adiabatic Passage can combine to increase our fluorescence signal by a factor of ~ 100. Also, a thermochemical beam source may increase our molecule flux by a factor of ~ 10. The combined signal increase may reduce our statistical uncertainty by a factor of $\gtrsim 10$. The dominant AC Stark shift systematic errors can be further suppressed by implementing electric field plates with improved thermal and optical properties.
References

