Command neurons in Pleurobranchaea receive synaptic feedback from the motor network they excite

See allHide authors and affiliations

Science  17 Feb 1978:
Vol. 199, Issue 4330, pp. 798-801
DOI: 10.1126/science.622571


Command neurons that cause rhythmic feeding behavior in the marine mollusc Pleurobranchaea californica have been identified in the cerebropleural ganglion (brain). Intracellular stimulation of single command neurons in isolated nervous systems, semi-intact prepartions, and restrained whole animals causes the same rhythmic motor output pattern as occurs during feeding. During this motor output pattern, action potentials recorded intracellularly from the command neurons occur in cyclic bursts that are phase-locked with the feeding rhythm. This modulation results from repetitive, alternating bursts of excitatory and inhibitory postsynaptic potentials, which are caused at least in part by synaptic feedback to the command neurons from identified classes of neurons in the feeding network. Central feedback to command neurons from the motor network they excite provides a possible general physiological mechanism for the sustained oscillation of neural networks controlling cyclic behavior.

Stay Connected to Science