Caffeine-induced uncoupling of mitosis from the completion of DNA replication in mammalian cells

See allHide authors and affiliations

Science  06 Jun 1986:
Vol. 232, Issue 4755, pp. 1264-1266
DOI: 10.1126/science.2422760


Caffeine was shown to induce mitotic events in mammalian cells before DNA replication (S phase) was completed. Synchronized BHK cells that were arrested in early S phase underwent premature chromosome condensation, nuclear envelope breakdown, morphological "rounding up," and mitosis-specific phosphoprotein synthesis when they were exposed to caffeine. These mitotic responses occurred only after the cells had entered S phase and only while DNA synthesis was inhibited by more than 70 percent. Inhibitors of protein synthesis blocked these caffeine-induced events, while inhibitors of RNA synthesis had little effect. These results suggest that caffeine induces the translation or stabilizes the protein product (or products) of mitosis-related RNA that accumulates in S-phase cells when DNA replication is suppressed. The ability to chemically manipulate the onset of mitosis should be useful for studying the regulation of this event in mammalian cells.