Ouabain resistance conferred by expression of the cDNA for a murine Na+, K+-ATPase alpha subunit

See allHide authors and affiliations

Science  21 Aug 1987:
Vol. 237, Issue 4817, pp. 901-903
DOI: 10.1126/science.3039660


The molecular basis for the marked difference between primate and rodent cells in sensitivity to the cardiac glycoside ouabain has been established by genetic techniques. A complementary DNA encoding the entire alpha 1 subunit of the mouse Na+- and K+-dependent adenosine triphosphatase (ATPase) was inserted into the expression vector pSV2. This engineered DNA molecule confers resistance against 10(-4) M ouabain to monkey CV-1 cells. Deletion of sequences encoding the carboxyl terminus of the alpha 1 subunit abolish the activity of the complementary DNA. The ability to assay the biological activity of this ATPase in a transfection protocol permits the application of molecular genetic techniques to the analysis of structure-function relationships for the enzyme that establishes the internal Na+/K+ environment of most animal cells. The full-length alpha 1 subunit complementary DNA will also be useful as a dominant selectable marker for somatic cell genetic studies utilizing ouabain-sensitive cells.