Biomaterial-centered infection: microbial adhesion versus tissue integration

See allHide authors and affiliations

Science  25 Sep 1987:
Vol. 237, Issue 4822, pp. 1588-1595
DOI: 10.1126/science.3629258


Biomaterials are being used with increasing frequency for tissue substitution. Complex devices such as total joint replacements and the total artificial heart represent combinations of polymers and metal alloys for system and organ replacement. The major barriers to the extended use of these devices are the possibility of bacterial adhesion to biomaterials, which causes biomaterial-centered infection, and the lack of successful tissue integration or compatibility with biomaterial surfaces. Interactions of biomaterials with bacteria and tissue cells are directed not only by specific receptors and outer membrane molecules on the cell surface, but also by the atomic geometry and electronic state of the biomaterial surface. An understanding of these mechanisms is important to all fields of medicine and is derived from and relevant to studies in microbiology, biochemistry, and physics. Modifications to biomaterial surfaces at an atomic level will allow the programming of cell-to-substratum events, thereby diminishing infection by enhancing tissue compatibility or integration, or by directly inhibiting bacterial adhesion.

Stay Connected to Science