Interparticle collisions driven by ultrasound

See allHide authors and affiliations

Science  02 Mar 1990:
Vol. 247, Issue 4946, pp. 1067-1069
DOI: 10.1126/science.2309118


Ultrasound has become an important synthetic tool in liquid-solid chemical reactions, but the origins of the observed enhancements remained unknown. The effects of high-intensity ultrasound on solid-liquid slurries were examined. Turbulent flow and shock waves produced by acoustic cavitation were found to drive metal particles together at sufficiently high velocities to induce melting upon collision. A series of transition-metal powders were used to probe the maximum temperatures and speeds reached during such interparticle collisions. Metal particles that were irradiated in hydrocarbon liquids with ultrasound underwent collisions at roughly half the speed of sound and generated localized effective temperatures between 2600 degrees C and 3400 degrees C at the point of impact for particles with an average diameter of approximately 10 microns.

Stay Connected to Science