Radar Reflectivity of Titan

See allHide authors and affiliations

Science  25 May 1990:
Vol. 248, Issue 4958, pp. 975-980
DOI: 10.1126/science.248.4958.975


The present understanding of the atmosphere and surface conditions on Saturn's largest moon, Titan, including the stability of methane, and an application of thermodynamics leads to a strong prediction of liquid hydrocarbons in an ethane-methane mixture on the surface. Such a surface would have nearly unique microwave reflection properties due to the low dielectric constant. Attempts were made to obtain reflections at a wavelength of 3.5 centimeters by means of a 70-meter antenna in California as the transmitter and the Very Large Array in New Mexico as the receiving instrument. Statistically significant echoes were obtained that show Titan is not covered with a deep, global ocean of ethane, as previously thought. The experiment yielded radar cross sections normalized by the Titan disk of 0.38 ± 0.15, 0.78 ± 0.15, and 0.25 ± 0.15 on three consecutive nights during which the sub-Earth longitude on Titan moved 50 degrees. The result for the combined data for the entire experiment is 0.35 ± 0.08. The cross sections are very high, most consistent with those of the Galilean satellites; no evidence of the putative liquid ethane was seen in the reflection data. A global ocean as shallow as about 200 meters would have exhibited reflectivities smaller by an order of magnitude, and below the detection limit of the experiment. The measured emissivity at similar wavelengths of about 0.9 is somewhat inconsistent with the high reflectivity.

Stay Connected to Science