New Mechanisms for Chemistry at Surfaces

See allHide authors and affiliations

Science  13 Jul 1990:
Vol. 249, Issue 4965, pp. 133-139
DOI: 10.1126/science.249.4965.133


It is becoming increasingly apparent that chemistry at surfaces, whether it be heterogeneous catalysis, semiconductors etching, or chemical vapor deposition, is controlled by much more than the nature and structure of the surface. Recent experiments that principally make use of molecular beam techniques have revealed that the energy at which an incident molecule collides with a surface can be the key factor in determining its reactivity with or on the surface. In addition, the collision energy of an incident particle has proven essential to the finding of new mechanisms for reaction or desorption of molecules at surfaces, collision-induced activation and collision-induced desorption. These phenomena are often responsible for the different surface chemistry observed under conditions of high reactant pressure, such as those present during a heterogeneous catalytic reaction, and of low pressure of reactants (< 10-4 torr), such as those present in an ultrahigh vacuum surface science experiment. This knowledge of the microscopic origins of the effect of pressure on the chemistry at surfaces has allowed the development of a scheme to bypass the high-pressure requirement. Reactions that are normally observed only at high reactant pressures, and which are the ones most often of practical importance, can now be carried out in low-pressure, ultrahigh vacuum environments.

Stay Connected to Science