Research Articles

Recoverin: a calcium sensitive activator of retinal rod guanylate cyclase

See allHide authors and affiliations

Science  22 Feb 1991:
Vol. 251, Issue 4996, pp. 915-918
DOI: 10.1126/science.1672047


Vertebrate retinal photoreceptors recover from photoexcitation-induced hydrolysis of guanosine 3', 5'-monophosphate (cyclic GMP) by resynthesizing cyclic GMP, which reopens cation channels that have been closed by light. Activation of guanylate cyclase by light-induced depletion of cytosolic calcium is a key event in this recovery process. This cyclase has now been shown to be regulated by a 23-kilodalton calcium binding protein. The protein is present in both rod and cone photoreceptors and was named recoverin because it promotes recovery of the dark state. The amino acid sequence of recoverin exhibits three potential calcium binding sites (EF hands). That recoverin binds calcium was confirmed with calcium-45 and by observing calcium-induced changes in its tryptophan fluorescence. Recoverin activated guanylate cyclase when free calcium was lowered from 450 to 40 nM, an effect that was blocked by an antibody to recoverin. Thus, guanylate cyclase in retinal rods is stimulated during recovery by the calcium-free form of recoverin. A comparison of recoverin with other calcium binding proteins reveals that it may represent, along with the protein visinin, a family of proteins that are regulated by submicromolar calcium concentrations.

Stay Connected to Science