Chemical and biological microstructures as probed by dynamic processes

See allHide authors and affiliations

Science  29 Mar 1991:
Vol. 251, Issue 5001, pp. 1574-1579
DOI: 10.1126/science.2011737


The dynamic process of electronic energy transfer is shown to be an important tool for probing the microstructure of molecular systems, particularly those in which donors and acceptors occupy specifically labeled sites of spatially confining host matrices. Special attention is given to analyzing the temporal behavior of the direct energy transfer reaction for systems in which the dipolar coupling is between a donor and randomly distributed acceptors. This dynamic process is dependent on two competing lengths when the donor and acceptor distribution is determined by the microstructure of the confining system: Rp, the dominant length characterizing the size of the confinement, and R0, which scales the strength of the dipolar coupling. When energy transfer processes are viewed in the context of these two competing lengths, a picture emerges of the microstructure of the confinement that is consistent with and corroborated by other structural probes.

Stay Connected to Science