Force of single kinesin molecules measured with optical tweezers

See allHide authors and affiliations

Science  09 Apr 1993:
Vol. 260, Issue 5105, pp. 232-234
DOI: 10.1126/science.8469975


Isometric forces generated by single molecules of the mechanochemical enzyme kinesin were measured with a laser-induced, single-beam optical gradient trap, also known as optical tweezers. For the microspheres used in this study, the optical tweezers was spring-like for a radius of 100 nanometers and had a maximum force region at a radius of approximately 150 nanometers. With the use of biotinylated microtubules and special streptavidin-coated latex microspheres as handles, microtubule translocation by single squid kinesin molecules was reversibly stalled. The stalled microtubules escaped optical trapping forces of 1.9 +/- 0.4 piconewtons. The ability to measure force parameters of single macromolecules now allows direct testing of molecular models for contractility.

Stay Connected to Science