An increased percentage of long amyloid beta protein secreted by familial amyloid beta protein precursor (beta APP717) mutants

See allHide authors and affiliations

Science  27 May 1994:
Vol. 264, Issue 5163, pp. 1336-1340
DOI: 10.1126/science.8191290


Normal processing of the amyloid beta protein precursor (beta APP) results in secretion of a soluble 4-kilodalton protein essentially identical to the amyloid beta protein (A beta) that forms insoluble fibrillar deposits in Alzheimer's disease. Human neuroblastoma (M17) cells transfected with constructs expressing wild-type beta APP or the beta APP717 mutants linked to familial Alzheimer's disease were compared by (i) isolation of metabolically labeled 4-kilodalton A beta from conditioned medium, digestion with cyanogen bromide, and analysis of the carboxyl-terminal peptides released, or (ii) analysis of the A beta in conditioned medium with sandwich enzyme-linked immunosorbent assays that discriminate A beta 1-40 from the longer A beta 1-42. Both methods demonstrated that the 4-kilodalton A beta released from wild-type beta APP is primarily but not exclusively A beta 1-40. The beta APP717 mutations, which are located three residues carboxyl to A beta 43, consistently caused a 1.5- to 1.9-fold increase in the percentage of longer A beta generated. Long A beta (for example, A beta 1-42) forms insoluble amyloid fibrils more rapidly than A beta 1-40. Thus, the beta APP717 mutants may cause Alzheimer's disease because they secrete increased amounts of long A beta, thereby fostering amyloid deposition.

Stay Connected to Science