Vibrationally coherent photochemistry in the femtosecond primary event of vision

See allHide authors and affiliations

Science  21 Oct 1994:
Vol. 266, Issue 5184, pp. 422-424
DOI: 10.1126/science.7939680


Femtosecond pump-probe experiments reveal the impulsive production of photoproduct in the primary event in vision. The retinal chromophore of rhodopsin was excited with a 35-femtosecond pulse at 500 nanometers, and transient changes in absorption were measured with 10-femtosecond probe pulses. At probe wavelengths within the photo-product absorption band, oscillatory features with a period of 550 femtoseconds (60 wavenumbers) were observed whose phase and amplitude demonstrate that they are the result of nonstationary vibrational motion in the ground state of the photoproduct. The observation of coherent vibrational motion of the photoproduct supports the idea that the primary step in vision is a vibrationally coherent process and that the high quantum yield of the cis-->trans isomerization in rhodopsin is a consequence of the extreme speed of the excited-state torsional motion.

Stay Connected to Science