Regulation of Cardiac Na+,Ca2+ Exchange and KATP Potassium Channels by PIP2

See allHide authors and affiliations

Science  16 Aug 1996:
Vol. 273, Issue 5277, pp. 956-959
DOI: 10.1126/science.273.5277.956


Cardiac Na+,Ca2+ exchange is activated by a mechanism that requires hydrolysis of adenosine triphosphate (ATP) but is not mediated by protein kinases. In giant cardiac membrane patches, ATP acted to generate phosphatidylinositol-4,5-bisphosphate (PIP2) from phosphatidylinositol (PI). The action of ATP was abolished by a PI-specific phospholipase C (PLC) and recovered after addition of exogenous PI; it was reversed by a PIP2-specific PLC; and it was mimicked by exogenous PIP2. High concentrations of free Ca2+ (5 to 20 μM) accelerated reversal of the ATP effect, and PLC activity in myocyte membranes was activated with a similar Ca2+ dependence. Aluminum reversed the ATP effect by binding with high affinity to PIP2. ATP-inhibited potassium channels (KATP) were also sensitive to PIP2, whereas Na+,K+ pumps and Na+ channels were not. Thus, PIP2 may be an important regulator of both ion transporters and channels.

Stay Connected to Science