You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Osteoclasts are multinucleated cells responsible for bone resorption. During the resorption cycle, osteoclasts undergo dramatic changes in their polarity, and resorbing cells reveal four functionally and structurally different membrane domains. Bone degradation products, both organic and inorganic, were endocytosed from the ruffled border membrane. They were then found to be transported in vesicles through the cell to the plasma membrane domain, located in the middle of the basal membrane, where they were liberated into the extracellular space. These results explain how resorbing osteoclasts can simultaneously remove large amounts of matrix degradation products and penetrate into bone.