Special Articles

Molecular Manipulation of Microstructures: Biomaterials, Ceramics, and Semiconductors

See allHide authors and affiliations

Science  29 Aug 1997:
Vol. 277, Issue 5330, pp. 1242-1248
DOI: 10.1126/science.277.5330.1242

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Abstract

Organic molecules can alter inorganic microstructures, offering a very powerful tool for the design of novel materials. In biological systems, this tool is often used to create microstructures in which the organic manipulators are a minority component. Three groups of materials—biomaterials, ceramics, and semiconductors—have been selected to illustrate this concept as used by nature and by synthetic laboratories exploring its potential in materials technology. In some of nature's biomaterials, macromolecules such as proteins, glycoproteins, and polysaccharides are used to control nucleation and growth of mineral phases and thus manipulate microstructure and physical properties. This concept has been used synthetically to generate apatite-based materials that can function as artificial bone in humans. Synthetic polymers and surfactants can also drastically change the morphology of ceramic particles, impart new functional properties, and provide new processing methods for the formation of useful objects. Interesting opportunities also exist in creating semiconducting materials in which molecular manipulators connect quantum dots or template cavities, which change their electronic properties and functionality.

View Full Text