You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
The caspase-3 (CPP32, apopain, YAMA) family of cysteinyl proteases has been implicated as key mediators of apoptosis in mammalian cells. Gelsolin was identified as a substrate for caspase-3 by screening the translation products of small complementary DNA pools for sensitivity to cleavage by caspase-3. Gelsolin was cleaved in vivo in a caspase-dependent manner in cells stimulated by Fas. Caspase-cleaved gelsolin severed actin filaments in vitro in a Ca2+-independent manner. Expression of the gelsolin cleavage product in multiple cell types caused the cells to round up, detach from the plate, and undergo nuclear fragmentation. Neutrophils isolated from mice lacking gelsolin had delayed onset of both blebbing and DNA fragmentation, following apoptosis induction, compared with wild-type neutrophils. Thus, cleaved gelsolin may be one physiological effector of morphologic change during apoptosis.