You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Many molecular mechanisms for neural adaptation to stress remain unknown. Expression of alternative splice variants of Slo, a gene encoding calcium- and voltage-activated potassium channels, was measured in rat adrenal chromaffin tissue from normal and hypophysectomized animals. Hypophysectomy triggered an abrupt decrease in the proportion of Slo transcripts containing a “STREX” exon. The decrease was prevented by adrenocorticotropic hormone injections. InXenopus oocytes, STREX variants produced channels with functional properties associated with enhanced repetitive firing. Thus, the hormonal stress axis is likely to control the excitable properties of epinephrine-secreting cells by regulating alternative splicing of Slo messenger RNA.
↵* To whom correspondence should be addressed. E-mail: dpm9{at}cornell.edu