You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Atmospheric carbon dioxide increased at a rate of 2.8 petagrams of carbon per year (Pg C year−1) during 1988 to 1992 (1 Pg = 1015 grams). Given estimates of fossil carbon dioxide emissions, and net oceanic uptake, this implies a global terrestrial uptake of 1.0 to 2.2 Pg C year−1. The spatial distribution of the terrestrial carbon dioxide uptake is estimated by means of the observed spatial patterns of the greatly increased atmospheric carbon dioxide data set available from 1988 onward, together with two atmospheric transport models, two estimates of the sea-air flux, and an estimate of the spatial distribution of fossil carbon dioxide emissions. North America is the best constrained continent, with a mean uptake of 1.7 ± 0.5 Pg C year−1, mostly south of 51 degrees north. Eurasia–North Africa is relatively weakly constrained, with a mean uptake of 0.1 ± 0.6 Pg C year−1. The rest of the world's land surface is poorly constrained, with a mean source of 0.2 ± 0.9 Pg C year−1.
* Correspondence should be addressed to the Carbon Modeling Consortium, AOS Program, Princeton University, Princeton, NJ 08544, USA. E-mail: cmc{at}princeton.edu