You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
The mechanism by which psychostimulants act as calming agents in humans with attention-deficit hyperactivity disorder (ADHD) or hyperkinetic disorder is currently unknown. Mice lacking the gene encoding the plasma membrane dopamine transporter (DAT) have elevated dopaminergic tone and are hyperactive. This activity was exacerbated by exposure to a novel environment. Additionally, these mice were impaired in spatial cognitive function, and they showed a decrease in locomotion in response to psychostimulants. This paradoxical calming effect of psychostimulants depended on serotonergic neurotransmission. The parallels between the DAT knockout mice and individuals with ADHD suggest that common mechanisms may underlie some of their behaviors and responses to psychostimulants.