You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Regulation of N-methyl-d-aspartate (NMDA) receptor activity by kinases and phosphatases contributes to the modulation of synaptic transmission. Targeting of these enzymes near the substrate is proposed to enhance phosphorylation-dependent modulation. Yotiao, an NMDA receptor–associated protein, bound the type I protein phosphatase (PP1) and the adenosine 3′,5′-monophosphate (cAMP)–dependent protein kinase (PKA) holoenzyme. Anchored PP1 was active, limiting channel activity, whereas PKA activation overcame constitutive PP1 activity and conferred rapid enhancement of NMDA receptor currents. Hence, yotiao is a scaffold protein that physically attaches PP1 and PKA to NMDA receptors to regulate channel activity.