You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
A bulk nanocrystalline (nc) pure copper with high purity and high density was synthesized by electrodeposition. An extreme extensibility (elongation exceeds 5000%) without a strain hardening effect was observed when the nc copper specimen was rolled at room temperature. Microstructure analysis suggests that the superplastic extensibility of the nc copper originates from a deformation mechanism dominated by grain boundary activities rather than lattice dislocation, which is also supported by tensile creep studies at room temperature. This behavior demonstrates new possibilities for scientific and technological advancements with nc materials.
↵* To whom correspondence should be addressed. E-mail: kelu{at}imr.ac.cn