You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Selective chemical reactions enacted within a cellular environment can be powerful tools for elucidating biological processes or engineering novel interactions. A chemical transformation that permits the selective formation of covalent adducts among richly functionalized biopolymers within a cellular context is presented. A ligation modeled after the Staudinger reaction forms an amide bond by coupling of an azide and a specifically engineered triarylphosphine. Both reactive partners are abiotic and chemically orthogonal to native cellular components. Azides installed within cell surface glycoconjugates by metabolism of a synthetic azidosugar were reacted with a biotinylated triarylphosphine to produce stable cell-surface adducts. The tremendous selectivity of the transformation should permit its execution within a cell's interior, offering new possibilities for probing intracellular interactions.
↵* To whom correspondence should be addressed. E-mail: bertozzi{at}cchem.berkeley.edu