You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Extremely halophilic archaea contain retinal-binding integral membrane proteins called bacteriorhodopsins that function as light-driven proton pumps. So far, bacteriorhodopsins capable of generating a chemiosmotic membrane potential in response to light have been demonstrated only in halophilic archaea. We describe here a type of rhodopsin derived from bacteria that was discovered through genomic analyses of naturally occuring marine bacterioplankton. The bacterial rhodopsin was encoded in the genome of an uncultivated γ-proteobacterium and shared highest amino acid sequence similarity with archaeal rhodopsins. The protein was functionally expressed inEscherichia coli and bound retinal to form an active, light-driven proton pump. The new rhodopsin exhibited a photochemical reaction cycle with intermediates and kinetics characteristic of archaeal proton-pumping rhodopsins. Our results demonstrate that archaeal-like rhodopsins are broadly distributed among different taxa, including members of the domain Bacteria. Our data also indicate that a previously unsuspected mode of bacterially mediated light-driven energy generation may commonly occur in oceanic surface waters worldwide.
↵* To whom correspondence should be addressed. E-mail: delong{at}mbari.org.