You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Quantum communication relies on the availability of light pulses with strong quantum correlations among photons. An example of such an optical source is a single-photon pulse with a vanishing probability for detecting two or more photons. Using pulsed laser excitation of a single quantum dot, a single-photon turnstile device that generates a train of single-photon pulses was demonstrated. For a spectrally isolated quantum dot, nearly 100% of the excitation pulses lead to emission of a single photon, yielding an ideal single-photon source.