You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
A single electron transistor is used as a local electrostatic probe to study the underlying spatial structure of the metal-insulator transition in two dimensions. The measurements show that as we approach the transition from the metallic side, a new phase emerges that consists of weakly coupled fragments of the two-dimensional system. These fragments consist of localized charge that coexists with the surrounding metallic phase. As the density is lowered into the insulating phase, the number of fragments increases on account of the disappearing metallic phase. The measurements reveal that the metal-insulator transition is a result of the microscopic restructuring that occurs in the system.
↵* To whom correspondence should be addressed. E-mail: shahal.ilani{at}weizmann.ac.il