You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Control of spatiotemporal chaos is one of the central problems of nonlinear dynamics. We report on suppression of chemical turbulence by global delayed feedback using, as an example, catalytic carbon monoxide oxidation on a platinum (110) single-crystal surface and carbon monoxide partial pressure as the controlled feedback variable. When feedback intensity was increased, spiral-wave turbulence was transformed into new intermittent chaotic regimes with cascades of reproducing and annihilating local structures on the background of uniform oscillations. The global feedback further led to the development of cluster patterns and standing waves and to the stabilization of uniform oscillations. These findings are reproduced by theoretical simulations.
↵* To whom correspondence should be addressed. E-mail: rotermun{at}fhi-berlin.mpg.de