You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Stem cells generate many differentiated, short-lived cell types, such as blood, skin, and sperm, throughout adult life. Stem cells maintain a long-term capacity to divide, producing daughter cells that either self-renew or initiate differentiation. Although the surrounding microenvironment or “niche” influences stem cell fate decisions, few signals that emanate from the niche to specify stem cell self-renewal have been identified. Here we demonstrate that the apical hub cells in the Drosophila testis act as a cellular niche that supports stem cell self-renewal. Hub cells express the ligand Unpaired (Upd), which activates the Janus kinase–signal transducer and activator of transcription (JAK-STAT) pathway in adjacent germ cells to specify self-renewal and continual maintenance of the germ line stem cell population.
↵* These authors contributed equally to this work.
↵† Present address: Department of Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.
↵‡ To whom correspondence should be addressed at the Department of Developmental Biology, Beckman Center B300, 279 Campus Drive, Stanford University School of Medicine, Stanford, CA 94305–5329, USA. E-mail: fuller{at}cmgm.stanford.edu