You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
A model for diamond nucleation by energetic species (for example, bias-enhanced nucleation) is proposed. It involves spontaneous bulk nucleation of a diamond embryo cluster in a dense, amorphous carbon hydrogenated matrix; stabilization of the cluster by favorable boundary conditions of nucleation sites and hydrogen termination; and ion bombardment–induced growth through a preferential displacement mechanism. The model is substantiated by density functional tight-binding molecular dynamics simulations and an experimental study of the structure of bias-enhanced and ion beam–nucleated films. The model is also applicable to the nucleation of other materials by energetic species, such as cubic boron nitride.